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Uniqueness Theorems for Subharmonic and Holomorphic
Functions of Several Variables on a Domain

B.N. Khabibullin∗, N.R. Tamindarova†

Abstract. We establish a general uniqueness theorem for subharmonic functions of several variab-
les on a domain. A corollary from this uniqueness theorem for holomorphic functions is formulated
in terms of the zero subset of holomorphic functions and restrictions on the growth of functions
near the boundary of domain.
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1. Introduction

1.1. Definitions and notations

We use an information and definitions from [1, 2, 3, 4, 5]. As usual, N := {1, 2, . . . },
R and C are the sets of all natural, real and complex numbers, resp. We set

R+ := {x ∈ R : x > 0}, R−∞ := {−∞}∪R, R+∞ := R∪{+∞}, R±∞ := R−∞∪R+∞, (1)

where the usual order relation 6 on R is complemented by the inequalities −∞ 6 x 6 +∞
for all x ∈ R±∞. Let f : X → Y be a function. Given S ⊂ X, we denote by f

∣∣
S

the
restriction of f to S. For Y ⊂ R±∞, g : X → R±∞ and S ⊂ X, we write “f 6 g on S ” if
f(x) 6 g(x) for all x ∈ S.

Let m ∈ N. Denote by Rm the m-dimensional Euclidian real space. Then Rm∞ :=
Rm ∪ {∞} is the Alexandroff (⇔one-point) compactification of Rm. Given a subset S
of Rm (or Rm∞), the closure closS, the interior intS and the boundary ∂S will always be
taken relative to Rm∞. Let S0 ⊂ S ⊂ Rm∞. If the closure closS0 is a compact subset of S in
the topology induced on S from Rm∞, then the set S0 is a relatively compact subset of S,
and we write S0 b S.

Let n ∈ N. Denote by Cn the n-dimensional Euclidian complex space. Then Cn∞ :=
Cn∪{∞} is the Alexandroff (⇔one-point) compactification of Cn. If necessary, we identify
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Cn (or Cn∞) with R2n (or R2n
∞ ). Given a subset S of Cn (or Cn∞), its closure closS and its

boundary ∂S will always be taken relative to Cn∞.

Let A,B be sets, and A ⊂ B. The set A is a non-trivial subset of the set B if the
subset A ⊂ B is non-empty (A 6= ∅) and proper (A 6= B).

We always understand the “positivity” or “positive” as > 0, where the symbol 0 denotes

the number zero, the zero function, the zero measure, etc. So, a function f : X → R
(1)
⊂

R±∞ is positive on X if f(x) > 0 for all x ∈ X. In such case we write “f > 0 on X”.

The class of all Borel real measures on local compact space X is denoted by M(X),
Mc(X) is the subclass of all Borel measures µ on X with compact support suppµ ⊂ X,
and M+(X) ⊂ M(X) is the subclass of all Borel positive measures on X, M+

c (X) :=
M+(X) ∩Mc(X). Given µ ∈ M(X) and S ⊂ X, we denote by µ

∣∣
S

the restriction of ν

to S. For ν ∈M(X), we write “ν > µ on S ” if
(
ν
∣∣
S
−µ

∣∣
S

)
∈M+(S).

Let O be a non-trivial open subset of Rm∞. We denote by sbh(O) the class of all
subharmonic functions u : O → R−∞ on O for m > 2, and all (local) convex functions
u : O → R−∞ on O for m = 1. The class sbh(O) contains the function −∞ : x 7→ −∞,
x ∈ O (identical to −∞); sbh+(O) := {u ∈ sbh(O) : u > 0 on O}. We set sbh∗(O) :=
sbh (O) \ {−∞}. For u ∈ sbh∗(O), the Riesz measure of u is the Borel positive measure

νu := cm ∆u ∈M+(O), cm :=
Γ(m/2)

2πm/2 max
{

1, (m− 2)
} , (2)

where ∆ is the Laplace operator acting in the sense of distribution theory, and Γ is the
gamma function. Such measures νu are Radon measures, i. e. νu(S) < +∞ for each subset
S b O. By definition, ν−∞(S) := +∞ for all S ⊂ O.

Let O be a non-trivial open subset of Cn∞. We denote by Hol(O) and sbh(O) the
class of holomorphic and subharmonic functions on O, resp. For u ∈ sbh∗(O), the Riesz
measure of u is the Borel (and Radon) positive measure

νu := c2n ∆u ∈M+(O), c2n =
(n− 1)!

2πn max{1, 2n− 2}
.

1.2. Main Theorem and Corollary

Definition 1. Let D be a non-trivial open connected subset of Rm∞, i. e. D is a non-trivial
domain in Rm∞. Let K be a non-trivial compact subset of D, i. e. ∅ 6= K = closK ⊂ D.
A function v ∈ sbh+(D \K) is called a test function for D outside of K if

lim
D3x′→x

v(x′) = 0 for each x ∈ ∂D and sup
x∈D\K

v(x) < +∞. (3)

The class of all such test functions for D outside of K is denoted by sbh+
0 (D \K).

Our main result for subharmonic functions is the following
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Theorem 1 (see [6, Corollary 1.1] for the case m = 2). Let D be a non-trivial domain in
Rm∞, K a compact subset of D with non-empty interior intK 6= ∅. Let M ∈ sbh∗(D) be
a function with the Riesz measure νM ∈ M+(D), v ∈ sbh+

0 (D \K) a test function for D
outside of K. Assume that ∫

D\K
v dνM < +∞. (4)

If u ∈ sbh(D) is a function with the Riesz measure νu ∈M+(D) such that

νu > ν ∈M+(D \K) on D \K, (5a)∫
D\K

v dν = +∞, (5b)

u 6M + const on D, (5c)

where const is a constant, then u = −∞.

We denote by σ2n−2 the (2n − 2)-dimensional surface (⇔Hausdorff) measure on Cn
and its restrictions to subsets of Cn. So, if n = 1, i. e. 2n − 2 = 0, then σ0(S) =

∑
z∈S 1

for each S ⊂ C, i. e. σ0(S) is equal to the number of points in the set S ⊂ C.
Below we identify Cn (or Cn∞) with Rm (or Rm∞) where m = 2n.
Our main result for holomorphic functions is the following

Corollary 1. Let all conditions of Theorem 1 be fulfilled including (4). Let f ∈ Hol(D)
be a holomorphic function on D and Zerof := {z ∈ D : f(z) = 0}. If

Z ⊂ (D \K) ∩ Zerof , (6a)∫
Z

v dσ2n−2 = +∞, (6b)

|f | 6 const eM on D, (6c)

where const is a constant, then f ≡ 0 on D, i. e. Zerof = D.

Proof. Under the conditions of Corollary 1, suppose that f 6= 0. Then we have
log |f | ∈ sbh∗(D) with the Riesz measure νlog |f | ∈ M+(D). Let nf : D → {0} ∪ N be
the multiplicity function of f [7, 4]. It is known that suppnf = Zerof . By the classical
Poincaré – Lelong formula [8] we have nf dσ2n−2 = dνlog |f | on D. Hence, if the condition
(6a) is fulfilled, then we get∫

Z

v dσ2n−2
(6a)

6
∫
v nf dσ2n−2 6

∫
v dνlog |f |. (7)

If the condition (6c) is also fulfilled, then for u := log |f | we have (5c) together with (5a)
for ν = νu = νlog |f |. Since u 6= −∞, by Theorem 1 we obtain the negation of the equality
(5b). Therefore we get∫

Z

v dσ2n−2
(7)

6
∫
v dνlog |f | =

∫
v dνu < +∞

which contradicts (6b). Corollary 1 is proved. J
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2. Main results

2.1. Gluing Theorem for m ∈ N

The next result shows how two subharmonic functions can be glued together.

Theorem 2 (see [4, Corollary 2.4.5], and also [2, Theorem 2.4.5] for m = 2). Let O, O0

be open sets in Rm∞, and O ⊂ O0. Let v0 ∈ sbh(O0), and v ∈ sbh(O). If

lim sup
O3x′→x

v(x′) 6 v0(x) for all points x ∈ O0 ∩ ∂O, (8)

then the function

ṽ :=

{
max{v, v0} on O,
v0 on O0 \ O,

(9)

belongs to the class sbh(O0).

Remark 1. A similar gluing theorem is true also for classes of plurisubharmonic functions
[4, Corollary 2.9.5].

2.2. Jensen measures and potentials

Let m ∈ N. Given t ∈ R∗ := R \ {0}, we set

hm(t) :=


|t| for m = 1,

log |t| for m = 2,

− 1

|t|m−2
for m > 3.

For simplicity, we consider only domains D in Rm ⊂ Rm∞, i. e. ∞ /∈ D.

Definition 2 ([9]–[13]). Let D ⊂ Rm be a subdomain, x0 ∈ D. A measure µ ∈M+
c (D) is

called the Jensen measure for sbh(D) at x0 ∈ D if

u(x0) 6
∫
udµ for all u ∈ sbh(D).

By Jx0(D) we denote the class of all Jensen measures for D at x0. Each Jensen measure
µ ∈ Jx0(D) is a probability measure, i. e. µ(D) = 1.

For µ ∈ Jx0(D) we shall say that the function

Vµ(x) :=

∫
hm(x− y) dµ(y)− hm(x− x0), x ∈ Rm∞ \ {x0}, (10)

is a potential of the Jensen measure µ ∈ J0(D).
A function V ∈ sbh+

(
Rm∞ \ {x0}

)
is called the Jensen potential inside of D with pole

at x0 ∈ D if the following two conditions hold:
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(i) there is a compact subset KV ⊂ D such that V ≡ 0 on Rm∞ \KV (finiteness),

(ii) lim sup
x0 6=x→x0

V (x)∣∣hm(x− x0)
∣∣ 6 1 (semi-normalization at x0).

By PJx0(D) we denote the class of all Jensen potentials inside of D with pole at x0 ∈ D.

We present interrelations between Jensen measures and potentials. The first is

Proposition 1 ([13, Proposition 1.4, Duality Theorem]). The map

P : Jx0(D)→ PJx0(D), P(µ)
(10)
:= Vµ, µ ∈ Jz0(D), (11)

is the bijection from Jx0(D) to PJx0(D) such that P
(
tµ1+(1−t)µ2

)
= tP(µ1)+(1−t)P(µ2)

for all t ∈ [0, 1] and for all µ1, µ2 ∈ Jx0(D). Besides,

P−1(V )
(2)
= cm ∆V

∣∣∣
D\{x0}

+

(
1− lim sup

x0 6=x→x0

V (x)

|hm(x− x0)|

)
· δx0 , V ∈ PJx0(D), (12)

where δx0 is the Dirac measure at the point x0, i. e. supp δx0 = {x0} and δx0
(
{x0}

)
= 1.

The second is a generalized Poisson – Jensen formula.

Proposition 2 ([13, Proposition 1.2]). Let µ ∈ Jx0(D). For each function u ∈ sbh(D)
with u(x0) 6= −∞ and the Riesz measure νu ∈M+(D) we have the equality

u(x0) +

∫
D\{x0}

Vµ dνu =

∫
D
u dµ. (13)

Given x ∈ Rm and r
(1)
∈ R+, we set B(x, r) := {x′ ∈ Rm : |x′−x| < r}, where | · | is the

Euclidean norm on Rm; B∗(x, r) := B(x, r) \ {x}; B(x, r) := closB(x, r).
By har(O) denote the class of all harmonic functions on an open subset O ⊂ Rm.

Corollary 2. Let D be a domain in Rm, x0 ∈ D, r0 > 0, and B(x0, r0) b D; b ∈ R+.
If the functions u ∈ sbh∗(D) with the Riesz measure νu and M ∈ sbh∗(D) with the Riesz
measure νM satisfy the inequality

u 6M + const on D, (14)

then there is a constant C ∈ R such that∫
D\B(x0,r0)

V dνu 6
∫
D\B(x0,r0)

V dνM + C (15)

for all functions V ∈ PJx0(D) satisfying the following three conditions:

V
∣∣
B∗(x0,r0)

∈ har
(
B∗(x0, r0)

)
,

lim sup
x0 6=x→x0

V (x)∣∣hm(x− x0)
∣∣ (ii)

= 1 (normalization at x0),

sup
x∈∂B(x0,r0)

V (x) 6 b. (16)
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Proof. The technique of balayage out from the ball B(x0, r0) gives two functions
u0 ∈ sbh∗(D) with the Riesz measure νu0 and M0 ∈ sbh∗(D) with the Riesz measure νM0

such that

u0
∣∣
B(x0,r0)

∈ har
(
B(x0, r0)

)
, u0 = u on D \B(x0, r0), (17u)

M0

∣∣
B(x0,r0)

∈ har
(
B(x0, r0)

)
, M0 = M on D \B(x0, r0),

u0
(14)

6 M0 + C0 on D where C0 ∈ R+ is a constant, (17b)

supp νM0 ⊂ D \B(x0, r0), νM0

(
∂B(x0, r0)

)
= νM

(
B(x0, r0)

)
(17n)

νM0

∣∣
D\B(x0,r0)

= νM
∣∣
D\B(x0,r0)

. (17r)

By Proposition 1, the measure µ
(12)
:= P−1(V )

(11)
∈ Jx0(D) satisfies the following conditions:

suppµ
(16)
⊂ D \B(x0, r0), µ(D) = 1. The inequality (17b) entails the inequality∫

u0 dµ 6
∫
M0 dµ+ C0.

Hence by Proposition 2∫
D\B(x0,r0)

V dνu
(17u)

6
∫
D
V dνu0

(13)

6
∫
D
V dνM0 +

(
C0 − u0(x0) +M0(x0)

)
.

Put C1 := C0 − u0(x0) +M0(x0) ∈ R. We continue this inequality as∫
D\B(x0,r0)

V dνu
(17n)

6
∫
D\B(x0,r0)

V dνM0 +

∫
B(x0,r0)

V dνM0 + C1

(17r)
=

∫
D\B(x0,r0)

V dνM +

∫
∂B(x0,r0)

V dνM0 + C1

(16)

6
∫
D\B(x0,r0)

V dνM + b νM0

(
B(x0, r0)

)
+ C1

(17n)
=

∫
D\B(x0,r0)

V dνM + b νM
(
B(x0, r0)

)
+ C1.

We choose C := b νM
(
B(x0, r0)

)
+ C1 and obtain the inequality (15). J

2.3. Continuation of test functions

Proposition 3. Let v ∈ sbh+
0 (D \ K) be a test function for D outside of K, r0 > 0,

and B(x0, 2r0) ⊂ K. Then there are subdomains D0 b D1 b D, a number r0 > 0 and a
function ṽ ∈ sbh+

(
D \ {x0}

)
such that

B(x0, 2r0) ⊂ K ⊂ D0, (18a)
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ṽ
∣∣
B∗(x0,2r0)

∈ har
(
B∗(x0, 2r0)

)
, (18b)

∃ lim
x0 6=x→x0

ṽ(x)∣∣hm(x− x0)
∣∣ ∈ (0,+∞), (18c)

ṽ = v on D \D1. (18d)

Proof. Obviously, there is a subdomain D0 b D satisfying (18a). Besides, there is
a subdomain D1 b D such that this domain D1 is regular for the Dirichlet problem
and D0 b D1. Let gD1(·, x0) be the Green’s function of D1 with the pole x0 where
gD1(x, x0) ≡ 0 for all x ∈ D \D1. Then gD1(·, x0) ∈ sbh

(
D \ {x0}

)
. Put

q := sup
x∈∂D0

v(x), a := inf
x∈∂D0

gD1(x, x0) > 0, v0 :=
q

a
gD1(·, x0),

and O := D \ closD0, O0 := D \ {x0}. Then the condition (8) is fulfilled. By Theorem
2, the function (9) is the required one according to the known properties of the Green’s
function. J

2.4. Proof of Theorem 1

Proof. Let B(x0, 2r0) ⊂ K, where r0 > 0. Suppose that the inequalities (5a), (5c)
are fulfilled for u 6= −∞. We must prove that the integral in (5b) with ν := νu is finite.
Consider the function ṽ from Proposition 3 where

0 < c
(18c)
:= lim

x0 6=x→x0

ṽ(x)∣∣hm(x− x0)
∣∣ < +∞.

Then the function V := 1
c ṽ satisfies the following conditions

V
∣∣
B∗(x0,2r0)

(18b)
∈ har

(
B∗(x0, 2r0)

)
, (19b)

lim
x0 6=x→x0

V (x)∣∣hm(x− x0)
∣∣ (18c)

= 1, (19c)

V
(18d)
=

1

c
v on D \D1. (19d)

lim
D3x′→x

V (x′)
(3)
= 0 for each x ∈ ∂D, (19e)

sup
x∈∂B(x0,r0)

V (x) =: b
(3)
< +∞. (19f)

We put V (x) ≡ 0 at x ∈ Rm∞ \D. Then V
(19e)
∈ sbh+

(
Rm∞ \ {x0}

)
. Consider the sequence

of functions Vn := max{0, V − 1/n}, n ∈ N. If n0 ∈ N is a sufficiently large number,
then every function Vn, n > n0, is a Jensen function inside of D with the pole at x0 ∈ D
such that

Vn
∣∣
B∗(x0,r0)

(19b)
∈ har

(
B∗(x0, r0)

)
, lim

x0 6=x→x0

Vn(x)∣∣hm(x− x0)
∣∣ (19c)

= 1, sup
x∈∂B(x0,r0)

Vn(x)
(19f)

6 b,
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1

c
v(x) = V (x) > Vn(x)↗ 1

c
v(x), for all x

(19d)
∈ D \D1 when n→∞. (20)

Hence, by Corollary 2 there is a constant C ∈ R+ such that∫
D\B(x0,r0)

Vn dνu
(15)

6
∫
D\B(x0,r0)

Vn dνM + C for all n > n0.

Therefore, for all n > n0,∫
D\B(x0,r0)

Vn dνu
(15)

6
∫
D\B(x0,r0)

Vn dνM + C
(20)

6
∫
D\B(x0,r0)

V dνM + C

6
∫
D\D1

V dνM +

∫
D1\B(x0,r0)

V dνM +C
(19f)

6
∫
D\D1

V dνM + b νM
(
D1 \B(x0, r0)

)
+C,

where we used the maximum principle for V ∈ sbh
(
Rm∞ \{x0}

)
in Rm∞ \B(x0, r0). Further,

we put C1 := b νM
(
D1 \B(x0, r0)

)
+ C ∈ R and continue as∫

D\B(x0,r0)
Vn dνu 6

∫
D\D1

V dνM + C1
(20)
=

1

c

∫
D\D1

v dνM + C1 6
1

c

∫
D\K

v dνM + C1.

So, when n→∞, we obtain in view of (20)

1

c

∫
D\D1

v dνu
(20)
=

∫
D\D1

V dνu 6 C2 :=
1

c

∫
D\K

v dνM + C1

(4)
∈ R.

Hence ∫
D\K

v dνu 6
∫
D1\K

v dνu + cC2 6 νu(D1 \K) sup
x∈D\K

v(x) + cC2

(3)
< +∞.

This completes the proof of Theorem 1. J

Remark 2. Our results show that the construction of test functions in the sense of
Definition 2 is important. For m = 2 = 2n such constructions have been developed in [6].
We will consider the case m 6= 2 in one of our next works.
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1994.

[6] B.N. Khabibullin, N.R. Tamindarova, Distribution of zeros and masses for holo-
morphic and subharmonic functions. I. Hadamard- and Blaschke-type conditions,
http://arxiv.org/pdf/1512.04610v2.pdf [math.CV], 12/2015–03/2016, 70 pages, list
of references 71. This work submitted to the journal “Sbornik: Mathematics” in 2015
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