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Study of the Periodic and Nonnegative Periodic Solu-
tions of Functional Differential Equations via Fixed Points

M.B. Mesmouli, A. Ardjouni∗, A. Djoudi

Abstract. In this paper, we study the existence of periodic and nonnegative periodic solutions of
the nonlinear neutral differential equation

x′ (t) = −a (t)h (x (t− τ (t))) + c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) .

We invert this equation to construct a sum of a compact map and a large contraction which is
suitable for applying the modification of Krasnoselskii’s theorem. The Carathéodory condition is
used for the function G.
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1. Introduction

Theory of functional differential equations with delay has undergone a rapid develop-
ment in the previous fifty years. We refer the readers to [1, 2, 3, 4, 6, 9, 10, 11, 12, 13]
and references therein for a wealth of reference materials on the subject. More recently,
researchers have given special attention to the study of equations in which the delay argu-
ment occurs in the derivative of the state variable as well as in the independent variable,
so-called neutral differential equations. In particular, qualitative analysis such as periodic-
ity and positivity of solutions of neutral differential equations, has been studied extensively
by many authors.

In the present paper, we study the existence of periodic and nonnegative periodic
solutions of the nonlinear differential equation

x′ (t) = −a (t)h (x (t− τ (t))) + c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) , (1)

where a is positive real valued function, c is continuously differentiable, τ is twice contin-
uously differentiable. The function h : R→ R is continuous, G : R× R× R→ R satisfies
the Carathéodory condition. Our purpose here is to use a modification of Krasnoselskii’s
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fixed point theorem due Burton (see [4], Theorem 3) to show the existence of periodic
and nonnegative periodic solutions for the equation (1). Clearly, the present problem is
totally nonlinear so that the variation of parameters cannot be applied directly. Then, we
resort to the idea of adding and subtracting terms. As noted by Burton in [4], the added
term destroys a contraction already present in part of the equation, but it replaces it with
the so called a large contraction mapping which is suitable for fixed point theory. During
the process, we have to transform (1) into an integral equation written as a sum of two
mappings: one is large contraction and the other is compact. After that, we use a variant
of Krasnoselskii’s fixed point theorem, to show the existence of periodic and nonnegative
periodic solutions.

This paper is organized as follows. In Section 2, we present the inversion of (1), some
definitions and Krasnoselskii-Burton’s fixed point theorem. In Section 3, we present our
main results on existence of periodic solutions of (1). Finally, we present our main results
on existence of nonnegative periodic solutions of (1) in Section 4.

2. Preliminaries

For T > 0 define PT = {φ : φ ∈ C (R,R) , φ (t+ T ) = φ (t)} , where C (R,R) is the
space of all real valued continuous functions. Then PT is a Banach space when it is
endowed with the supremum norm

‖x‖ = max
t∈[0,T ]

|x (t) |.

In this paper we assume that

a (t− T ) = a (t) , c (t− T ) = c (t) , τ (t− T ) = τ (t) , τ (t) ≥ τ∗ > 0, (2)

where τ∗ is a constant, a is positive and

1− e−
∫ t
t−T a(s)ds ≡ 1

η
6= 0. (3)

It is interesting to note that equation (1) becomes of advanced type when τ (t) < 0. Also,
we assume that for all t, 0 ≤ t ≤ T ,

τ ′ (t) 6= 1. (4)

Since τ is periodic, condition (4) implies that τ ′ (t) < 1. The function G (t, x, y) is periodic
in t of period T . That is

G (t− T, x, y) = G (t, x, y) . (5)

The following lemma is fundamental to our results.

Lemma 1. Suppose (2)–(5) hold. If x ∈ PT , then x is a solution of the equation (1) if
and only if

x (t) = η

∫ t

t−T
κ (t, u) a (u) [x (u)− h (x (u))] du+

c (t)

1− τ ′ (t)
x (t− τ (t)) +
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+

∫ t

t−τ(t)
a (u)h (x (u)) du− η

∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s)h (x (s)) dsdu+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (x (u− τ (u))) du+

+ η

∫ t

t−T
κ (t, u) [−b (u)x (u− τ (u)) +G (u, x (u) , x (u− τ (u)))] du, (6)

where

b (u) =
(c′ (u) + c (u) a (u)) (1− τ ′ (u)) + τ ′′ (u) c (u)

(1− τ ′ (u))2
, (7)

and
κ (t, u) = e−

∫ t
u a(s)ds. (8)

Proof. Let x ∈ PT be a solution of (1). Rewrite the equation (1) as

x′ (t) + a (t)x (t) = a (t)x (t)− a (t)h (x (t)) + a (t)h (x (t))−
− a (t)h (x (t− τ (t))) + c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) =

= a (t) [x (t)− h (x (t))] +
d

dt

∫ t

t−τ(t)
a (s)h (x (s)) ds+

+
[(

1− τ ′ (t)
)
a (t− τ (t))− a (t)

]
h (x (t− τ (t))) +

+ c (t)x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) .

Multiply both sides of the above equation by exp
(∫ t

0 a (s) ds
)

and then integrate from

t− T to t, to obtain∫ t

t−T

[
x (u) e

∫ u
0 a(s)ds

]′
du =

=

∫ t

t−T
a (u) [x (u)− h (x (u))] e

∫ u
0 a(s)dsdu+

+

∫ t

t−T

[
d

du

∫ u

u−τ(u)
a (s)h (x (s)) ds

]
e
∫ u
0 a(s)dsdu+

+

∫ t

t−T

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (x (u− τ (u))) e

∫ u
0 a(s)dsdu+

+

∫ t

t−T

[
c (u)x′ (u− τ (u)) +G (u, x (u) , x (u− τ (u)))

]
e
∫ u
0 a(s)dsdu.

As a consequence, we arrive at

x (t) e
∫ t
0 a(s)ds − x (t− T ) e

∫ t−T
0 a(s)ds =

=

∫ t

t−T
a (u) [x (u)− h (x (u))] e

∫ u
0 a(s)dsdu+
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+

∫ t

t−T

[
d

du

∫ u

u−τ(u)
a (s)h (x (s)) ds

]
e
∫ u
0 a(s)dsdu+

+

∫ t

t−T

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (x (u− τ (u))) e

∫ u
0 a(s)dsdu+

+

∫ t

t−T

[
c (u)x′ (u− τ (u)) +G (u, x (u) , x (u− τ (u)))

]
e
∫ u
0 a(s)dsdu.

By dividing both sides of the above equation by exp
(∫ t

0 a (s) ds
)

and taking into account

the fact that x (t) = x (t− T ), we obtain

x (t) =

= η

∫ t

t−T
a (u) [x (u)− h (x (u))] e−

∫ t
u a(s)dsdu+

+ η

∫ t

t−T

[
d

du

∫ t

u−τ(u)
a (s)h (x (s)) ds

]
e−

∫ t
u a(s)dsdu+

+ η

∫ t

t−T

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (x (u− τ (u))) e−

∫ t
u a(s)dsdu+

+ η

∫ t

t−T

[
c(u)x′(u− τ(u)) +G (u, x (u) , x (u− τ (u)))

]
e−

∫ t
u a(s)dsdu, (9)

where η is given by (3). Rewrite∫ t

t−T
c (u)x′ (u− τ (u)) e−

∫ t
u a(s)dsdu =

=

∫ t

t−T

(
1− τ ′ (u)

)
x′ (u− τ (u))

c(u)

1− τ ′ (u)
e−

∫ t
u a(s)dsdu.

Integration by parts in the above integral with

U =
c(u)

1− τ ′ (u)
e−

∫ t
u a(s)ds and dV =

(
1− τ ′ (u)

)
x′ (u− τ (u)) ,

yields ∫ t

t−T
c (u)x′ (u− τ (u)) e−

∫ t
u a(s)dsdu =

=
1

η
× x (t− τ (t)) c (t)

1− τ ′ (t)
−
∫ t

t−T
b (u)x (u− τ (u)) e−

∫ t
u a(s)dsdu, (10)

where b(u) is given by (7). In the same way we obtain the integral∫ t

t−T

[
d

du

∫ u

u−τ(u)
a (s)h (x (s)) ds

]
e−

∫ t
u a(s)dsdu =



74 M.B. Mesmouli, A. Ardjouni, A. Djoudi

=

[∫ u

u−τ(u)
a (s)h (x(s)) dse−

∫ t
u a(s)ds

]t
t−T

−

−
∫ t

t−T

[∫ u

u−τ(u)
a (s)h (x (s)) ds

]
a(u)e−

∫ t
u a(s)dsdu =

=

[∫ t

t−τ(t)
a(s)h (x(s)) ds−

∫ t−T

t−T−τ(t)
a (s)h (x (s)) dse−

∫ t
t−T a(s)ds

]
−

−
∫ t

t−T

[∫ u

u−τ(u)
a (s)h (x (s)) ds

]
a (u) e−

∫ t
u a(s)dsdu =

=
1

η

∫ t

t−τ(t)
a (u)h (x (u)) du−

−
∫ t

t−T

[∫ u

u−τ(u)
a (s)h (x (s)) ds

]
a (u) e−

∫ t
u a(s)dsdu. (11)

Then substituting (10) and (11) into (9) we obtain (6). The converse implication is easily
obtained and the proof is complete.J

Now, we give some definitions to be used in the sequel.

Definition 1. The map f : [0, T ] × Rn → R is said to satisfy Carathéodory conditions
with respect to L1 [0, T ] if the following conditions hold:

(i) For each z ∈ Rn, the mapping t 7→ f (t, z) is Lebesgue measurable.
(ii) For almost all t ∈ [0, T ], the mapping z 7→ f (t, z) is continuous on Rn.
(iii) For each r > 0, there exists αr ∈ L1 ([0, T ] ,R) such that for almost all t ∈ [0, T ]

and for all z such that |z| < r, we have |f (t, z)| ≤ αr (t).

T. A. Burton observed that Krasnoselskii’s result can be more attractive in applications
with some changes and formulated Theorem 1 below (see [5] for the proof).

Definition 2. Let (M, d) be a metric space and assume that B :M→M. B is said to
be a large contraction, if for ϕ, ψ ∈ M, with ϕ 6= ψ, we have d(Bϕ,Bψ) < d(ϕ,ψ), and
if ∀ε > 0, ∃δ < 1 such that

[ϕ,ψ ∈M, d (ϕ,ψ) ≥ ε] =⇒ d (Bϕ,Bψ) < δd (ϕ,ψ) .

It is proved in [5] that a large contraction defined on a closed bounded and complete metric
space has a unique fixed point.

Theorem 1 (Krasnoselskii-Burton). Let M be a closed bounded convex nonempty subset
of a Banach space (B, ‖.‖). Suppose that A and B map M into M such that

(i) A is completely continuous,
(ii) B is large contraction,
(iii) x, y ∈M implies Ax+By ∈M.

Then there exists z ∈M with z = Az +Bz.
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3. Existence of periodic solutions

To apply Theorem 1, we need to define a Banach space B, a closed bounded convex
subsetM of B and construct two mappings: one is a completely continuous and the other
is large contraction. So, let (B, ‖.‖) = (PT , ‖.‖) and

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L} , (12)

with L ∈ (0, 1]. For x ∈M, let the mapping H be defined by

H (x) = x− h (x) , (13)

and by (6), define the mapping S : PT → PT as follows

(Sϕ) (t) = η

∫ t

t−T
κ (t, u) a (u)H (ϕ (u)) du+

c (t)

1− τ ′ (t)
ϕ (t− τ (t)) +

+

∫ t

t−τ(t)
a (u)h (ϕ (u)) du− η

∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s)h (ϕ (s)) dsdu+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du+

+ η

∫ t

t−T
κ (t, u) [−b (u)ϕ (u− τ (u)) +G (u, ϕ (u) , ϕ (u− τ (u)))] du. (14)

Then, we express the above equation as

(Sϕ) (t) = (Aϕ) (t) + (Bϕ) (t) ,

where A,B : PT → PT are given by

(Aϕ) (t) =
c (t)

1− τ ′ (t)
ϕ (t− τ (t)) +

∫ t

t−τ(t)
a (u)h (ϕ (u)) du−

− η
∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s)h (ϕ (s)) dsdu+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du+

+ η

∫ t

t−T
κ (t, u) [−b (u)ϕ (u− τ (u)) +G (u, ϕ (u) , ϕ (u− τ (u)))] du, (15)

and

(Bϕ) (t) = η

∫ t

t−T
κ (t, u) a (u)H (ϕ (u)) du. (16)

We will assume that the following conditions hold.

(H1) a ∈ L1 [0, T ] is bounded.
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(H2) h is locally Lipschitz continuous. Then for x, y ∈ M there exist a constant E > 0
such that

|h (x)− h (y)| ≤ E ‖x− y‖ .

(H3) G satisfies Carathéodory conditions with respect to L1 [0, T ].

(H4) There exists periodic functions g1, g2, g3 ∈ L1 [0, T ], with period T , such that

|G (t, x, y)| ≤ g1 (t) |x|+ g2 (t) |y|+ g3 (t) .

Now, we need the following assumptions

β1β2 (EL+ |h (0)|) ≤ γ1
2
L, (17)

where β1 = maxt∈[0,T ] |τ (t)| and β2 = maxt∈[0,T ] {a (t)},

|b (t)| ≤ γ2a (t) , (18)((
1− τ ′ (t)

)
a (t− τ (t)) + a (t)

)
(EL+ |h (0)|) ≤ γ3La (t) , (19)

g1 (t)L+ g2 (t)L+ g3 (t) ≤ γ4La (t) , (20)

γ5 = max
t∈[0,T ]

∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣ , (21)

J [γ1 + γ2 + γ3 + γ4 + γ5] ≤ 1, (22)

where γi, 1 ≤ i ≤ 5 and J are positive constants with J ≥ 3.

Lemma 2. For A defined in (15), suppose that (2)–(5), (17)–(22) and (H1)–(H4) hold.
Then A :M→M.

Proof. Let A be defined by (15). First, by (2) and (5), a change of variables in (15)
shows that (Aϕ) (t+ T ) = (Aϕ) (t). That is, if ϕ ∈ PT , then Aϕ is periodic with period
T . By (H2) we obtain

|h (x)| ≤ E |x|+ |h (0)| .

Now let ϕ ∈M. By (17)–(22) and (H1)–(H4) we have

|(Aϕ) (t)| ≤

≤
∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣ |ϕ (t− τ (t))|+
∫ t

t−τ(t)
a (u) |h (ϕ (u))| du+

+ η

∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s) |h (ϕ (s))| dsdu+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u)) + a (u)

]
|h (ϕ (u− τ (u)))| du+
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+ η

∫ t

t−T
κ (t, u) (|b (u)| |ϕ (u− τ (u))|+ |G (u, ϕ (u) , ϕ (u− τ (u)))|) du ≤

≤ γ5L+ β1β2 (EL+ |h (0)|) +

+ η

∫ t

t−T
κ (t, u) a (u)β1β2 (EL+ |h (0)|) du+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u)) + a (u)

]
(EL+ |h (0)|) du+

+ η

∫ t

t−T
κ (t, u) a (u) γ2Ldu+

+ η

∫ t

t−T
κ (t, u) [g1 (t) |ϕ (t) |+ g2 (t) |ϕ (t− τ (t)) |+ g3 (t)] du ≤

≤ γ1L+ γ2L+ γ3L+ γ4L+ γ5L ≤
L

J
≤ L.

That is Aϕ ∈M.J

Lemma 3. For A :M→M defined in (15), suppose that (2)–(5), (17)–(22) and (H1)–
(H4) hold. Then A is completely continuous.

Proof. We show that A is continuous in the supremum norm. Let ϕn ∈M, where n is
a positive integer such that ϕn → ϕ as n→∞. Then

|(Aϕn) (t)− (Aϕ) (t)| ≤

≤
∣∣∣∣ c (t)

1− τ ′ (t)

∣∣∣∣ |ϕn (t− τ (t))− ϕ (t− τ (t))|+

+

∫ t

t−τ(t)
a (u) |h (ϕn (u))− h (ϕ (u))| du+

+ η

∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s) |h (ϕn (s))− h (ϕ (s))| dsdu+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
×

× |h (ϕn (u− τ (u)))− h (ϕ (u− τ (u)))| du+

+ η

∫ t

t−T
κ (t, u) |b (u)| |ϕn (u− τ (u))− ϕ (u− τ (u))| du+

+ η

∫ t

t−T
κ (t, u) |G (u, ϕn(u), ϕn (u− τ (u)))−G (u, ϕ (u) , ϕ (u− τ (u)))| du.

By the Dominated Convergence Theorem, limn→∞ |(Aϕn) (t)− (Aϕ) (t)| = 0. Then A is
continuous.

We next show that A is completely continuous. Let ϕ ∈ M. Then, by Lemma 2, we
see that

‖Aϕ‖ ≤ L,
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and so the family of functions Aϕ is uniformly bounded. Again, let ϕ ∈M. Without loss
of generality, we can pick ω < t such that t− ω < T . Then

|(Aϕ) (t)− (Aϕ) (ω)| ≤

≤
∣∣∣∣ c (t)

1− τ ′ (t)
ϕ (t− τ (t))− c (ω)

1− τ ′ (ω)
ϕ (ω − τ (ω))

∣∣∣∣+
+

∣∣∣∣∣
∫ t

t−τ(t)
a (u)h (ϕ (u)) du−

∫ ω

ω−τ(ω)
a (u)h (ϕ (u)) du

∣∣∣∣∣+
+ η

∣∣∣∣∣
∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s)h (ϕ (s)) dsdu−

−
∫ ω

ω−T
κ (ω, u) a (u)

∫ u

u−τ(u)
a(s)h (ϕ(s)) dsdu

∣∣∣∣∣+
+ η

∣∣∣∣∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du−

−
∫ ω

ω−T
κ (ω, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du

∣∣∣∣+
+ η

∣∣∣∣∫ t

t−T
κ (t, u) b (u)ϕ (u− τ (u)) du−

∫ ω

ω−T
κ (ω, u) b (u)ϕ (u− τ (u)) du

∣∣∣∣+
+ η

∣∣∣∣∫ t

t−T
κ (t, u)G (u, ϕ (u) , ϕ (u− τ (u))) du−

−
∫ ω

ω−T
κ (ω, u)G (u, ϕ (u) , ϕ (u− τ (u))) du

∣∣∣∣ .
Since (H1)–(H4) and (17)–(22) hold, we can rewrite

η

∣∣∣∣∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du−

−
∫ ω

ω−T
κ (ω, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du

∣∣∣∣ ≤
≤ η

∫ t

ω
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
|h (ϕ (u− τ (u)))| du+

+ η

∫ ω

ω−T
|κ (t, u)− κ (ω, u)|

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
×

× |h (ϕ (u− τ (u)))| du+

+ η

∫ t−T

ω−T
κ (ω, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
|h (ϕ (u− τ (u)))| du ≤

≤ 2ηβ3

∫ t

ω
γ3La (u) du+ η

∫ ω

ω−T
|κ (t, u)− κ (ω, u)| γ3La (u) du ≤
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≤ 2ηβ3γ3L

∫ t

ω
a (u) du+ ηγ3L

∫ T

0
|κ (t, u)− κ (ω, u)| a (u) du,

where β3 = maxu∈[t−T,t] {κ (t, u)}, and

η

∣∣∣∣∫ t

t−T
κ (t, u) b (u)ϕ (u− τ (u)) du−

−
∫ ω

ω−T
κ (ω, u) b (u)ϕ (u− τ (u)) du

∣∣∣∣+
+ η

∣∣∣∣∫ t

t−T
κ (t, u)G (u, ϕ (u) , ϕ (u− τ (u))) du−

−
∫ ω

ω−T
κ (ω, u)G (u, ϕ (u) , ϕ (u− τ (u))) du

∣∣∣∣ ≤
≤ 2ηβ3

∫ t

ω

[
a (u) γ3L+ g√2L (u)

]
du+

+ η

∫ T

0
|κ (t, u)− κ (ω, u)|

[
a (u) γ3L+ g√2L (u)

]
du,

and

η

∣∣∣∣∣
∫ t

t−T
κ (t, u) a (u)

∫ u

u−τ(u)
a (s)h (ϕ (s)) dsdu−

−
∫ ω

ω−T
κ (ω, u) a (u)

∫ u

u−τ(u)
a(s)h (ϕ (s)) dsdu

∣∣∣∣∣ ≤
≤ 2ηβ3

∫ t

ω
a (u)

γ1
2
Ldu+ η

∫ ω

ω−T
|κ (t, u)− κ (ω, u)| a (u)

γ1
2
Ldu ≤

≤ ηβ3γ1L
∫ t

ω
a (u) du+ η

γ1
2
L

∫ T

0
|κ (t, u)− κ (ω, u)| a (u) du,

and ∣∣∣∣∣
∫ t

t−τ(t)
a (s)h (ϕ (s)) ds−

∫ τ

ω−τ(ω)
a (s)h (ϕ (s)) ds

∣∣∣∣∣ =

=

∣∣∣∣∣
∫ t

ω
a (s)h (ϕ (s)) ds−

∫ t−τ(t)

ω−τ(ω)
a (s)h (ϕ (s)) ds

∣∣∣∣∣ ≤
≤ (EL+ h (0))

(∫ t

ω
a (s) ds+

∫ t−τ(t)

ω−τ(ω)
a (s) ds

)
,

which implies

|(Aϕ) (t)− (Aϕ) (ω)| ≤
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≤
∣∣∣∣ c (t)

1− τ ′ (t)
ϕ (t− τ (t))− c (ω)

1− τ ′ (ω)
ϕ (ω − τ (ω))

∣∣∣∣+
+ 2ηβ3γ3L

∫ t

ω
a (u) du+ ηγ3L

∫ T

0
|κ (t, u)− κ (ω, u)| a (u) du+

+ 2ηβ3

∫ t

ω

[
a (u) γ3L+ g√2L (u)

]
du+

+ η

∫ T

0
|κ (t, u)− κ (ω, u)|

[
a (u) γ3L+ g√2L (u)

]
du+

+ ηβ3γ1L

∫ t

ω
a (u) du+ η

γ1
2
L

∫ T

0
|κ (t, u)− κ (ω, u)| a (u) du+

+ (EL+ h (0))

(∫ t

ω
a (s) ds+

∫ t−τ(t)

ω−τ(ω)
a (s) ds

)
.

Then, by the Dominated Convergence Theorem, |(Aϕ) (t)− (Aϕ) (ω)| → 0 as t − ω →
0 independently of ϕ ∈ M. Thus, (Aϕ) is equicontinuous. Hence, by Ascoli-Arzela’s
theorem, A is completely continuous.J

Now, we state an important result of [1, Theorem 3.4] and for convenience we present
below its proof. We deduce by this Theorem that the following are sufficient conditions
for the mapping H given by (13) to be a large contraction on the set M.

(H5) h : R→ R is continuous on [−L,L] and differentiable on (−L,L).

(H6) The function h is strictly increasing on [−L,L].

(H7) supt∈(−L,L) h
′ (t) ≤ 1.

Theorem 2. Let h : R→ R be a function satisfying (H5)–(H7). Then the mapping H in
(13) is a large contraction on the set M.

Proof. Let ϕ,ψ ∈ M with ϕ 6= ψ. Then ϕ (t) 6= ψ (t) for some t ∈ R. Let us denote
the set of all such t by D (ϕ,ψ), i.e.,

D (ϕ,ψ) = {t ∈ R : ϕ (t) 6= ψ (t)} .

For all t ∈ D (ϕ,ψ), we have

|(Hϕ) (t)− (Hψ) (t)| ≤
≤ |ϕ (t)− ψ (t)− h (ϕ (t)) + h (ψ (t))| ≤

≤ |ϕ (t)− ψ (t)|
∣∣∣∣1− h (ϕ (t))− h (ψ (t))

ϕ (t)− ψ (t)

∣∣∣∣ . (23)

Since h is a strictly increasing function, we have

h (ϕ (t))− h (ψ (t))

ϕ (t)− ψ (t)
> 0 for all t ∈ D (ϕ,ψ) . (24)
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For each fixed t ∈ D (ϕ,ψ) define the interval It ⊂ [−L,L] by

It =

{
(ϕ (t) , ψ (t)) if ϕ (t) < ψ (t) ,
(ψ (t) , ϕ (t)) if ψ (t) < ϕ (t) .

The Mean Value Theorem implies that for each fixed t ∈ D (ϕ,ψ) there exists a real
number ct ∈ It such that

h (ϕ (t))− h (ψ (t))

ϕ (t)− ψ (t)
= h′ (ct) .

By (H6) and (H7) we have

0 ≤ inf
u∈(−L,L)

h′ (u) ≤ inf
u∈It

h′ (u) ≤ h′ (ct) ≤ sup
u∈It

h′ (u) ≤ sup
u∈(−L,L)

h′ (u) ≤ 1. (25)

Hence, by (23)–(25) we obtain

|(Hϕ) (t)− (Hψ) (t)| ≤ |ϕ (t)− ψ (t)|
∣∣∣∣1− inf

u∈(−L,L)
h′ (u)

∣∣∣∣ , (26)

for all t ∈ D (ϕ,ψ). This implies a large contraction in the supremum norm. To see this,
choose a fixed ε ∈ (0, 1) and assume that ϕ and ψ are two functions in M satisfying

ε ≤ sup
t∈(−L,L)

|ϕ (t)− ψ (t)| = ‖ϕ− ψ‖ .

If |ϕ (t)− ψ (t)| ≤ ε
2 for some t ∈ D (ϕ,ψ), then we get by (25) and (26) that

|(Hϕ) (t)− (Hψ) (t)| ≤ 1

2
|ϕ (t)− ψ (t)| ≤ 1

2
‖ϕ− ψ‖ . (27)

Since h is continuous and strictly increasing, the function h
(
u+ ε

2

)
− h (u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 ≤ |ϕ (t)− ψ (t)| for some

t ∈ D (ϕ,ψ), then by (H6) and (H7) we conclude that

1 ≥ h (ϕ (t))− h (ψ (t))

ϕ (t)− ψ (t)
> λ,

where

λ :=
1

2L
min

{
h
(
u+

ε

2

)
− h (u) : u ∈ [−L,L]

}
> 0.

Hence, (23) implies
|(Hϕ) (t)− (Hψ) (t)| ≤ (1− λ) ‖ϕ− ψ‖ . (28)

Consequently, combining (27) and (28) we obtain

|(Hϕ) (t)− (Hψ) (t)| ≤ δ ‖ϕ− ψ‖ , (29)

where

δ = max

{
1

2
, 1− λ

}
.
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The proof is complete.J

The next result shows the relationship between the mappings H and B in the sense of
large contractions. Assume that

max {|H (−L)| , |H (L)|} ≤ 2L

J
. (30)

Lemma 4. Let B be defined by (16), and suppose (2)–(5) and (H5)–(H7) hold. Then
B :M→M is a large contraction.

Proof. Obviously, B is continuous and it is easy to show that (Bϕ)(t+ T ) = (Bϕ)(t).
Let ϕ ∈M. Then

|(Bϕ) (t)| ≤
∫ t

t−T
κ (t, u) a (u) max {|H (−L)| , |H (L)|} du ≤

≤ 2L

J
< L,

which implies B :M→M.
By Theorem 2, H is a large contraction on M. Then for any ϕ,ψ ∈ M with ϕ 6= ψ

and for any ε > 0, from the proof of that Theorem we can find a δ < 1 such that

|(Bϕ) (t)− (Bψ) (t)| =
∣∣∣∣η ∫ t

t−T
κ (t, u) a (u) [H (ϕ (u))−H (ψ (u))] du

∣∣∣∣ ≤
≤ ‖ϕ− ψ‖ η

∫ t

t−T
κ (t, u) a (u) du ≤

≤ δ ‖ϕ− ψ‖ .

The proof is complete.J

Theorem 3. Suppose the hypotheses of Lemmas 2, 3 and 4 hold. Let M be defined by
(12). Then the equation (1) has a T -periodic solution in M.

Proof. By Lemmas 2, 3, A is continuous and A (M) is contained in a compact set. Also,
from Lemma 4, the mapping B is a large contraction. Next, we show that if ϕ,ψ ∈ M,
we have ‖Aψ +Bϕ‖ ≤ L. Let ϕ,ψ ∈M with ‖ϕ‖ , ‖ψ‖ ≤ L. Then

‖Aψ +Bϕ‖ ≤ [γ1 + γ2 + γ3 + γ4]L+
2

J
L ≤

≤ L

J
+

2L

J
= L.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied. Thus, there
exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1, this fixed point is a
solution of (1). Hence, (1) has a T -periodic solution.J
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4. Existence of nonnegative periodic solutions

Motivated by the works [7, 8, 9], we obtain in this section the existence of a nonnegative
periodic solution of (1). To apply Theorem 1, we need to define a closed, convex and
bounded subset M of PT . So, let

M = {φ ∈ PT : 0 ≤ φ ≤ K} , (31)

where K is a positive constant. To simplify notation, we let

F (t, x (t)) =

∫ t

t−τ(t)
a (s)h (x (s)) ds, (32)

and we assume for all t ∈ [0, T ], x ∈ M, that there exist constants h1, h2,c1, c2, a1, a2,
such that

h1, h2 ≥ 0, −h1x ≤ F (t, x) ≤ h2x, (33)

c1, c2 ≥ 0, −c1 ≤
c (t)

1− τ ′ (t)
≤ c2, (34)

c2 + h2 < 1, (35)

0 < a1 ≤ a (t) ≤ a2, (36)

(h1 + c1) a2 + (c2 + h2) a1 ≤ a1, (37)

(h1 + c1)Ka2 ≤ −a (t)F (t, x) +
[(

1− τ ′ (t)
)
a (t− τ (t))− a (t)

]
h (y)−

− b (t) y +G (t, x, y) , (38)

− a (t)F (t, x) +
[(

1− τ ′ (t)
)
a (t− τ (t))− a (t)

]
h (y) + a (t)H (x)− b (t) y+

+G (t, x, y) ≤ (1− h2 − c2)Ka1. (39)

Lemma 5. Let A,B be given by (15), (16), respectively, and assume (2)–(5) and (33)–
(39) hold. Then A, B : M→M.

Proof. Let A be defined by (15). Then, for any ϕ ∈M, we have

(Aϕ) (t) ≤ c (t)

1− τ ′ (t)
ϕ (t− τ (t)) + F (t, ϕ (t))−

− η
∫ t

t−T
κ (t, u) a (u)F (u, ϕ (u)) du+

+ η

∫ t

t−T
κ (t, u)

((
1− τ ′ (u)

)
a (u− τ (u))− a (u)

)
h (ϕ (u− τ (u))) du+

+ η

∫ t

t−T
κ (t, u) [−b (u)ϕ(u− τ (u)) +G (u, ϕ (u) , ϕ (u− τ (u)))] du ≤
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≤ η
∫ t

t−T
κ (t, u) (1− h2 − c2)Ka1du+ h2K + c2K ≤

≤ η
∫ t

t−T
κ (t, u) a (u) (1− h2 − c2)Kdu+ h2K + c2K = K.

On the other hand

(Aϕ) (t) ≥ η

∫ t

t−T
κ (t, u) a2 (Kh1 +Kc1) du− h1K − h1K ≥

≥ η

∫ t

t−T
κ (t, u) a (u) (Kh1 +Kc1) du− h1K − h1K = 0.

That is, Aϕ ∈M.
Now, let B be defined by (16). Then, for any ϕ ∈M, we have

0 ≤ (Bϕ) (t) ≤ η
∫ t

t−T
κ (t, u) a (u) (1− h2 − c2)Kdu ≤ K.

That is, Bϕ ∈M.J

Theorem 4. Suppose the hypotheses of Lemmas 3, 4 and 5 hold. Then the equation (1)
has a nonnegative T -periodic solution x in the subset M.

Proof. By Lemma 3, A is completely continuous. Also, by Lemma 4, the mapping B
is a large contraction. By Lemma 5, A,B : M→M. Next, we show that if ϕ,ψ ∈M, then
we have 0 ≤ Aψ +Bϕ ≤ K. Let ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ K. By (33)–(39)

(Aψ)(t) + (Bϕ)(t) =

= η

∫ t

t−T
κ (t, u) a(u)H (ϕ(u)) du+

c (t)

1− τ ′ (t)
ψ(t− τ(t))+

+ F (t, ψ (t))− η
∫ t

t−T
κ (t, u) a(u)F (u, ψ (u)) du+

+ η

∫ t

t−T
κ (t, u)

[(
1− τ ′ (u)

)
a (u− τ (u))− a (u)

]
h (ϕ (u− τ (u))) du+

+ η

∫ t

t−T
κ (t, u) [−b(u)ψ(u− τ(u)) +G(u, ψ(u), ψ(u− τ(u)))] du ≤

≤ η
∫ t

t−T
κ (t, u) a (u) (1− h2 − c2)Kdu+ h2K + c2K = K.

On the other hand
(Aψ) (t) + (Bϕ) (t) ≥ 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied. Thus, there
exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1, this fixed point is a
solution of (1) and the proof is complete.J
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