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Abstract Parabolic Initial Boundary Value Problems with

Singular Data and with Values in Interpolation Spaces

A. Favini, Y. Yakubov∗

Abstract. We consider abstract initial boundary value problems for parabolic differential-operator
equations on the rectangle [0, T ]× [0, 1] with singular data. We use our previous results on norm-
estimates of solutions and R-boundedness of some sets of boundary value problems for abstract
elliptic equations with a parameter on [0, 1] in a UMD Banach space. Unique solvability of these
problems is proved in the Sobolev spaces of vector-valued functions with values in some interpo-
lation spaces. The corresponding estimates for the solutions are also established. We also show
completeness of elementary solutions of abstract parabolic boundary value problems. Abstract
results are provided by a relevant application to parabolic PDEs. In some cases, the boundary
conditions may contain the intermediate points of the interval [0, 1] or may be integro-differential.

Key Words and Phrases: abstract parabolic equation, singular data, UMD Banach space,
interpolation space, completeness, elementary solutions.
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1. Introduction and basic notations

In our work [4], we have studied abstract parabolic initial boundary value problems
in the form (5)–(7)below in the space Lq((0, T );Lp((0, 1);E)), where E is a UMD Banach
space. The local boundary conditions (6) are simple, but abstract operators B(x) and
A(x) in (5) are rather general. We have proved maximal Lq-regularity property for the
problem. We have been able to do that because, first, we have studied in the same paper
the corresponding abstract elliptic boundary value problems depending on a parameter.
We have proved R-boundedness property for the corresponding resolvent sets, which was
a core and non-trivial part of the paper. Then, in our another paper [6], we have treated
a problem in the form (1)–(3)below with very general non-local boundary conditions (2).
In [6], we set more restrictions on B(x) and A(x) = A + A1(x) with a constant opera-
tor main term. We have not succeeded to prove there the corresponding R-boundedness
property. We only proved norm-boundedness. Therefore, we did not get the maximal Lq-
regularity property, but we have investigated well-posedness of the problem in the space
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C([0, T ];Lp((0, 1);E)), where E is a UMD Banach space. Then, completeness of elemen-
tary solutions of the homogeneous problem corresponding to (1)–(2) has been proved. In
both of the above studies, the solvability spaces and the problem data are regular.

In the present paper, using the corresponding results of S. G. Pyatkov and M. V.
Uvarova [9], we continue the investigation of the same problems, but with spaces and data
singular in some sense. We essentially use here our previous studies and results of [4], [5]
and [6]. So, following [9], we assume that the Cauchy data and the right-hand side of the
equation, as t → 0, are singular in some sense: the initial data belong to some “negative”
space and the right-hand side belongs to the space Lp with weight tα, where α can be
rather large. Problems for parabolic equations (including the Navier-Stokes system) with
singular data were considered, e.g., by H. Amann in [1], [2].

Let us give necessary definitions and notations. We consider complex Banach spaces.

If E and F are Banach spaces, B(E,F ) denotes the Banach space of all bounded,
linear operators from E into F with the norm equal to the operator norm; moreover,
B(E) := B(E,E). The spectrum of a linear operator A in E is denoted by σ(A), its
resolvent set by ρ(A). The domain and range of an operator A are denoted by D(A) and
R(A), respectively. The resolvent of an operator A is denoted by R(λ,A) := (λI −A)−1.

A Banach space E is said to be of class HT, if the Hilbert transform is bounded on
Lp(R;E) for some (and then all) p > 1. Here the Hilbert transform H of a function
f ∈ S(R;E), the Schwartz space of rapidly decreasing E-valued functions, is defined by

Hf :=
1

π
PV (

1

t
) ∗ f,

i.e., (Hf)(t) := 1
π lim

ε→0

∫

|τ |>ε
f(t−τ)

τ dτ . These spaces are also often called UMD Banach

spaces, where the UMD stands for the property of unconditional martingale differences.

Definition 1. Let E be a Banach space, and A be a closed linear operator in E. The
operator A is called sectorial if the following conditions are satisfied:

(1) D(A) = E, R(A) = E, (−∞, 0) ⊂ ρ(A);

(2) ‖λ(λI +A)−1‖ ≤ M for all λ > 0 and some M < ∞.

Definition 2. Let E and F be Banach spaces. A family of operators T ⊂ B(E,F ) is called
R-bounded, if there is a constant C > 0 and p ≥ 1 such that for each natural number n,
Tj ∈ T , uj ∈ E and for all independent, symmetric, {−1, 1}-valued random variables εj
on [0, 1] (e.g., the Rademacher functions εj(t) = sign sin(2jπt) ), the inequality

∥

∥

∥

n
∑

j=1

εjTjuj

∥

∥

∥

Lp((0,1);F )
≤ C

∥

∥

∥

n
∑

j=1

εjuj

∥

∥

∥

Lp((0,1);E)
,

is valid. The smallest such C is called R-bound of T and is denoted by R{T }.
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Definition 3. A sectorial operator A is called R-sectorial if

RA(0) := R{λ(λI +A)−1 : λ > 0} < ∞.

The number

φR
A := inf{θ ∈ (0, π) : RA(π − θ) < ∞},

where RA(θ) := R{λ(λI +A)−1 : | arg λ| ≤ θ}, is called an R-angle of the operator A.

Definition 4. Let E be a Banach space. The space E has a property (α) if there is a
constant C > 0 such that, ∀n ∈ N, ∀αij ∈ C with |αij | ≤ 1, ∀uij ∈ E, 1 ≤ i, j ≤ n,

∫ 1

0

∫ 1

0

∥

∥

∥

n
∑

i=1

n
∑

j=1

εi(t)εj(s)αijuij

∥

∥

∥
dtds ≤ C

∫ 1

0

∫ 1

0

∥

∥

∥

n
∑

i=1

n
∑

j=1

εi(t)εj(s)uij

∥

∥

∥
dtds.

For more details about above definitions, we refer the reader, e.g., to [3] and [8].

For the closed operator A in E, the domain of definition D(An) of the operator An,
n ∈ N, becomes a Banach space E(An) with respect to the norm

‖u‖E(An) :=
(

n
∑

k=0

‖Aku‖2
)

1

2

.

The operator An from E(An) into E is bounded.

For the Banach spaces F and E, introduce the Banach space W n
p ((0, 1);F,E), 1 < p <

∞, n ∈ N, of vector-valued functions with the finite norm

‖u‖Wn
p ((0.1);F,E) :=

(

1
∫

0

‖u(x)‖pF dx+

1
∫

0

‖u(n)(x)‖pEdx
)

1

p
.

We write W n
p ((0, 1);E) := W n

p ((0, 1);E,E).

Let E0 and E1 be two Banach spaces continuously embedded into the Banach space
E : E0 ⊂ E, E1 ⊂ E. Two such spaces are called an interpolation couple {E0, E1}.
Then, a standard real interpolation space (E0, E1)θ,p , 0 < θ < 1, p ≥ 1, is defined (for
the exact definitions and properties we refer the reader, e.g., to the book by H. Triebel
[10]).

Remark 1. All the proofs below may seem ”very short”. This is because we essentially
use the results of our previous works [4], [5], and [6], where the most laborious calculations
have been already done.
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2. Abstract parabolic initial boundary value problems and application

to parabolic initial boundary value problems

We will use the corresponding results of S. G. Pyatkov and M. V. Uvarova [9], so
let us state here some notation and definitions of [9]. Let X be a Banach space. Define
Lp,tδ0 ((0, T );X) as the space of strongly measurable functions defined on the interval (0, T )
with values in X and satisfying the condition

‖u‖pL
p,tδ0

((0,T );X) =

∫ T

0
tδ0p‖u(t)‖pEdt < ∞.

If δ0 = 0, then we get just Lp((0, T );X). So, in fact, ‖u‖pL
p,tδ0

((0,T );X) = ‖tδ0u‖pLp((0,T );X).

Let now L be a linear closed operator in X with the dense domain D(L). The operator
L is called positive if (−∞, 0] ⊂ ρ(L) and there exists a positive constant C such that

‖R(λ,L)‖ ≤ C(1 + |λ|)−1, ∀λ ∈ (−∞, 0].

In fact, in what follows, it suffices to assume that the operator eiϕL is positive for some
ϕ ∈ [0, 2π).

We have already defined E(Ln), n ∈ N. Obviously, for a positive operator, the norm
of E(Ln), n > 0, coincides with the norm ‖Lnu‖, i.e., ‖u‖E(Ln) = ‖Lnu‖, and the space
E(Ln) can be also defined as the completion of X in this norm. The definition of the
space E(Ln) with integer n < 0 can be found, e.g., in [7, Section 5]. In particular, when
E is also reflexive, the space E(Ln), n < 0, coincides with the dual space of E((L∗)−n),
where L∗ denotes the adjoint operator of L.

By the real interpolation method, we construct the space Bs
q(X) = (E(Lm), E(Ln))θ,q,

where 1 ≤ q ≤ ∞, n < s < m, n and m are integers, 0 < θ < 1, and s = m(1 − θ) + nθ.
Note that here real s can be negative! For the properties of the spaces Bs

q(X), we refer
the reader to [7, Section 5], [10, subsections 1.14 and 1.15.4], and [9].

Consider now, in a Banach space E, the following abstract initial boundary value
problem for a parabolic differential-operator equation

∂u(t, x)

∂t
−

∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x) +A1(x)u(t, x)+

+ γu(t, x) = f(t, x), (t, x) ∈ (0, T ) × (0, 1), (1)

αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk
∑

s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2, (2)

u(0, x) = u0(x), x ∈ (0, 1), (3)

where mk ∈ {0, 1}; γ > 0; αk, βk are complex numbers; xks ∈ [0, 1]; B(x), A1(x), for
x ∈ [0, 1], and A, Tks are, in general, unbounded operators in E.
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In the Banach space X = Lp((0, 1);E), p > 1, consider an operator L defined by the
equalities

D(L) := W 2
p

(

(0, 1);E(A), E;Lku = 0, k = 1, 2
)

,

Lu := u′′(x)−B(x)u′(x)−Au(x)−A1(x)u(x)− γu(x),
(4)

where Lku := αku
(mk)(0) + βku

(mk)(1) +
∑Nk

s=1 Tksu(xks), k = 1, 2. From the proof below
it follows that the operator eiπL, for some sufficiently large γ > 0, is positive. Therefore,
the construction of the spaces Bs

q(X) := Bs
q(Lp) with respect to the above operator L in

(4) is justified.

Theorem 1. Let the following conditions be satisfied:

(1) an operator A is closed, densely defined and invertible in a UMD Banach space E;

(2) R{λR(λ,A) : | arg λ| ≥ β} < ∞, for some 0 < β < π
2 ;

†

(3) the embedding E(A) ⊂ E is compact;

(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;

(5) for any ε > 0 and for almost every x ∈ [0, 1], there exists C(ε) > 0 such that

‖B(x)u‖ ≤ ε‖A
1

2u‖+ C(ε)‖u‖, u ∈ D(A
1

2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1

2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u are
measurable on [0, 1] in E;

(6) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (E(A), E) 1

2p
,p, p ∈ (1,∞),

‖Tksu‖(E(A),E) 1
2
+ 1

2p ,p
≤ ε‖u‖(E(A),E) 1

2p ,p
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(E(A),E) 1
2
,p
+ C(ε)‖u‖;

(7) f ∈ Lq((0, T );B
s
q (Lp))∩Lq,tδ0 ((0, T );B

s+δ0
q (Lp)), for some δ0 > 0, q ∈ (1,∞), s ∈ R;

(8) u0 ∈ B
s+1−1/q
q (Lp).

Then, there exists sufficiently large γ > 0 in (1) such that the problem (1)–(3) has
a unique solution u(t, x) with u ∈ W 1

q ((0, T );B
s
q (Lp)) ∩ Lq((0, T );B

s+1
q (Lp)). Moreover,

Lu, ut ∈ Lq,tδ0 ((0, T );B
s+δ0
q (Lp)), and the following estimate holds:

‖u‖W 1
q ((0,T );Bs

q (Lp))+‖u‖Lq((0,T );Bs+1
q (Lp))

+‖tδ0ut‖Lq((0,T );B
s+δ0
q (Lp))

+‖tδ0Lu‖
Lq((0,T );B

s+δ0
q (Lp))

≤ C
(

‖f‖Lq((0,T );Bs
q (Lp)) + ‖tδ0f‖

Lq((0,T );B
s+δ0
q (Lp))

+ ‖u0‖Bs+1−1/q
q (Lp)

)

.

†In fact, conditions (1) and (2) are equivalent to saying that A is invertible R-sectorial operator in E with
the R-angle φR

A < β.
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Proof. Using (4), rewrite the problem (1)-(3) in the form

u′(t) = Lu(t) + f(t),

u(0) = u0,

to which we want to apply [9, Theorem 4] (see Theorem 7 in the Appendix). To this end,
it suffices to verify that, for some α > 0,

‖R(λ,L)‖B(X) ≤ C(1 + |λ|)−1, | arg λ| ≤
π

2
+ α.

In turn, the latter inequality (with α = π
2 − β), which is the most difficult part in the

proof, follows from our earlier work [5, Theorem 6] (with ϕ = π−β; see Theorem 9 in the
Appendix) for sufficiently large γ > 0. ◭

Remark 2. Note that there is no the term γu(x) in the equation in (30) and the result
of Theorem 9 is obtained in the sector | arg λ| ≤ ϕ for sufficiently large |λ|. Taking γ > 0
sufficiently large in our operator L in (4), we get the corresponding result of Theorem 9
in the whole sector.

For the resolvent of the operator L in (4), we have proved only a norm-estimate ([5,
Theorem 6]; see Theorem 9 in the Appendix) and not an R-boundedness condition. That
is why, for problem (1)–(3), we were able to use [9, Theorem 4] (see Theorem 7 in the
Appendix), not [9, Theorem 5] (see Theorem 8 in the Appendix), where theR-boundedness
condition for L is claimed. On the other hand, in [4] we have considered a problem
with rather simple boundary conditions, but with wider classes of the operators in the
equation, for which we have succeeded to prove the R-boundedness condition. Then, the
next theorem is proved in a similar way as the previous one. The only thing is that we
use [9, Theorem 5] (see Theorem 8 in the Appendix), and now, condition (1) of Theorem
8 follows from [4, Theorem 2.3].

So let’s consider in a Banach space E the following abstract initial boundary value
problem for a parabolic differential-operator equation

∂u(t, x)

∂t
−

∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+A(x)u(t, x)+

+ γu(t, x) = f(t, x), (t, x) ∈ (0, T ) × (0, 1), (5)

∂m1u(t, 0)

∂xm1
= 0,

∂m2u(t, 1)

∂xm2
= 0, t ∈ (0, T ), (6)

u(0, x) = u0(x), x ∈ (0, 1), (7)

where mk ∈ {0, 1}; γ > 0; B(x), A(x), for x ∈ [0, 1], are, in general, unbounded operators
in E.

In the Banach space X = Lp((0, 1);E), p > 1, consider an operator L̃ defined by the
equalities

D(L̃) := W 2
p

(

(0, 1);E(A), E; L̃ku = 0, k = 1, 2
)

,

L̃u := u′′(x)−B(x)u′(x)−A(x)u(x)− γu(x),
(8)
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where L̃1u := u(m1)(0), L̃2u := u(m2)(1). One constructs the spaces Bs
q(X) := Bs

q(Lp) with

respect to the above operator L̃ in (8).

Theorem 2. Let the following conditions be satisfied:

(1) for any x ∈ [0, 1], the operator A(x) is closed, densely defined and invertible in a
UMD Banach space E with property (α) and there exist C(x) > 0, 0 < β(x) < π,
such that

‖λR(λ,A(x))‖ ≤ C(x), | arg λ| ≥ β(x);

(2) the domains D(A(x)) := D(A) and D(A(x)1/2) := D(A1/2) are independent of x ∈
[0, 1];

(3) for any x ∈ [0, 1], the operator B(x) ∈ B(E(A1/2), E); and if x = 0 or x = 1, then,
for any ε > 0, there exists C(ε) > 0 such that

‖B(x)u‖ ≤ ε‖A
1

2u‖+ C(ε)‖u‖, u ∈ D(A
1

2 );

(4) the maps x → A(x) and x → B(x) belong to C([0, 1];B(E(A), E)) and C([0, 1];
B(E(A1/2), E)), respectively;

(5) ∀x ∈ [0, 1], ∀λ ∈ C, with Re(λ) ≥ 0, ∀σ ∈ R, the operator λ + σ2 + iσB(x) + A(x)
is a bijection between E(A) and E, and (λ+ σ2 + iσB(x) +A(x))−1 ∈ B(E).

(6) ∀x ∈ [0, 1], the families of operators {(λ+ σ2)(λ+ σ2 + iσB(x) +A(x))−1 : Re(λ) ≥
0, σ ∈ R} and {A(x)(λ + σ2 + iσB(x) + A(x))−1 : Re(λ) ≥ 0, σ ∈ R} in B(E) are
R-bounded;

(7) f ∈ Lq((0, T );B
s
q (Lp)) ∩ Lq,t−s((0, T );Lp((0, 1);E)), for some q ∈ (1,∞), s ≤ 0,

s 6= 1/q − 1;

(8) u0 ∈ B
s+1−1/q
q (Lp).

Then, there exists sufficiently large γ > 0 in (5) such that the problem (5)–(7) has
a unique solution u(t, x) with u ∈ W 1

q ((0, T );B
s
q (Lp)) ∩ Lq((0, T );B

s+1
q (Lp)). Moreover,

Lu, ut ∈ Lq,t−s((0, T );Lp((0, 1);E)), and the following estimate holds:

‖u‖W 1
q ((0,T );Bs

q (Lp)) + ‖u‖Lq((0,T );Bs+1
q (Lp))

+

+‖t−sut‖Lq((0,T );Lp((0,1);E)) + ‖t−sL̃u‖Lq((0,T );Lp((0,1);E)) ≤

≤ C
(

‖f‖Lq((0,T );Bs
q (Lp)) + ‖t−sf‖Lq((0,T );Lp((0,1);E)) + ‖u0‖Bs+1−1/q

q (Lp)

)

.

Note that the boundary conditions (6) are much more simple than the boundary con-
ditions (2), but there is an advantage about the operators in the equation (5). The main
operator A(x) in (5) depends on x. The operator B(x) in (5) satisfies the corresponding
inequality (see condition (3) of the last theorem) only at the endpoints of the interval [0, 1]
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in contrast to condition (5) of Theorem 1, where the inequality is claimed for almost every

x ∈ [0, 1]. This means, in fact, that the operator B(x) is compact from E(A
1

2 ) into E for
almost every x ∈ [0, 1]. For the problem (5)–(7) it is claimed that B(x) is only bounded

from E(A
1

2 ) into E, for x ∈ (0, 1), and is compact only for x = 0, 1!
Observe also, that under the conditions of the last theorem, we get for the operator L̃

theR-boundedness condition (1) in Theorem 8 for | arg λ| ≤ π
2 . But, using, e.g., [8, Lemma

2.21], we get that there exists α ∈ (0, π2 ) such that the corresponding R-boundedness
condition is also fulfilled for | arg λ| ≤ π

2 + α.
Show now some application of Theorem 1. Let Ω := (0, 1) × G, where G ⊂ R

r,
r ≥ 2 be a bounded open domain with an (r− 1)-dimensional boundary ∂G which locally
admits rectification, and let us consider in the domain (0, T ) × Ω a very nonclassical
parabolic initial boundary value problem (with integro-differential terms in the equation
and unbounded operators and the values of the unknown function in intermediate points
in boundary conditions)

Dtu(t, x, y)−D2
xu(t, x, y) + b(x, y)Dxu(t, x, y) +

∫

G
c(x, y, z)Dxu(t, x, z)dz−

−

r
∑

s,j=1

asj(y)DsDju(t, x, y) +

r
∑

j=1

bj(x, y)Dju(t, x, y) + b0(x, y)u(t, x, y)+

+
1

∑

ℓ=0

r
∑

j=1

∫

G
cℓj(x, y, z)D

ℓ
zju(t, x, z)dz + γu(t, x, y) =

= f(t, x, y), (t, x, y) ∈ (0, T ) × (0, 1) ×G, (9)

Lku := αkD
mk
x u(t, 0, y) + βkD

mk
x u(t, 1, y) +

Nk
∑

s=1

Tksu(t, xks, ·) = 0, (t, y) ∈ (0, T ) ×G,

k = 1, 2, (10)

L0u :=

r
∑

j=1

cj(y
′)Dju(t, x, y

′)+ c0(y
′)u(t, x, y′) = 0, (t, x, y′) ∈ (0, T )× (0, 1)×∂G, (11)

u(0, x, y) = u0(x, y), (x, y) ∈ (0, 1) ×G, (12)

where Dt := ∂
∂t , Dx := ∂

∂x , Dzj := ∂
∂zj

, Dj := −i ∂
∂yj

, mk ∈ {0, 1}, γ > 0, αk, βk are

complex numbers, y := (y1, . . . , yr), xks ∈ [0, 1] , Tks are, in general, unbounded operators
in Lh(G), 1 < h < ∞. Let m be the order of the differential boundary operator L0 in
(11), i.e., m = 0 if all cj(y

′) ≡ 0, j = 1, . . . , r (and then c0(y
′) 6= 0, ∀y′ ∈ ∂G), and m = 1

if at least one of cj(y
′), j = 1, . . . , r, is not identically zero.

In this section we will also consider the Besov spaces

Bs
h,p(G) := (W s0

h (G),W s1
h (G))θ,p,

where 0 ≤ s0, s1 are integers, W n
h (G) stands for the Sobolev space, 0 < θ < 1, 1 < h < ∞,

1 < p < ∞ and s = (1− θ)s0 + θs1.
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Theorem 3. Let the following conditions be satisfied:

(1) (smoothness conditions) |asj(y)− asj(z)| ≤ C|y− z|δ for some C > 0 and δ ∈ (0, 1),
∀y, z ∈ G; b, bj , b0 ∈ L∞(Ω); c, cℓj ∈ L∞(Ω ×G); cj , c0 ∈ C2−m(∂G); ∂G ∈ C2;

(2) (ellipticity condition for the below operator A) for y ∈ G, σ ∈ R
r, | arg λ| ≥ β, for

some 0 < β < π
2 , |σ|+ |λ| 6= 0, we have

λ+

r
∑

s,j=1

asj(y)σsσj 6= 0;

(3) (Lopatinskii-Shapiro condition for the below operator A) y′ is any point on ∂G, the
vector σ′ is a tangent and σ is a normal vector to ∂G at the point y′ ∈ ∂G. Consider
the following ordinary differential problem, for | arg λ| ≥ β with β from condition
(2):

[

λ+

r
∑

s,j=1

asj(y
′)
(

σ′
s − iσs

d

dt

)(

σ′
j − iσj

d

dt

)]

u(t) = 0, t > 0, (13)

r
∑

j=1

cj(y
′)
(

σ′
j − iσj

d

dt

)

u(t)
∣

∣

∣

t=0
= ω, for m = 1, (14)

u(0) = ω, for m = 0; (15)

it is required that for m = 1 the problem (13), (14) (for m = 0 the problem (13),
(15)) have one and only one solution, with all its derivatives tending to zero as
t → ∞ for any number ω ∈ C; ‡

(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;

(5) if mk = 0, then Tks = 0; if mk = 1, then, for ε > 0 and u ∈ B
2− 1

p

h,p (G;L0u = 0,m <

2− 1
p −

1
h),

‖Tksu‖
B

1− 1
p

h,p (G)
≤ ε‖u‖

B
2− 1

p
h,p (G)

+ C(ε)‖u‖Lh(G),

‖Tksu‖Lh(G) ≤ ε‖u‖B1
h,p(G) + C(ε)‖u‖Lh(G),

where p 6= h
h−1 and p, h ∈ (1,∞), or p = h

h−1 and m = 0.§

‡Recall that, in the case m = 0, the boundary condition (11) is transformed into the Dirichlet boundary
condition u(t, x, y′) = 0, (t, x, y′) ∈ (0, T )× (0, 1)× ∂G.
§In the case where p = h

h−1
= 2 and m = 1, B

3

2

2,2(G;L0u ∈ B̃
1

2

2,2(G)) (see [10, Theorem 4.3.3]) should

be written instead of B
3

2

2,2(G;L0u = 0, m < 1). Here is the definition: B̃s
q,p(G) := {u | u ∈ Bs

q,p(R
r),

supp(u) ⊂ G}.
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(6)
f ∈ Lq((0, T );B

s
q (Lp)) ∩ Lq,tδ0 ((0, T );B

s+δ0
q (Lp)),

for some δ0 > 0, q ∈ (1,∞), s ∈ R; ¶

(7) u0 ∈ B
s+1−1/q
q (Lp).

Then, there exists sufficiently large γ > 0 in (9) such that the problem (9)–(12) has a
unique solution u(t, x, y) with u ∈ W 1

q ((0, T );B
s
q (Lp)) ∩ Lq((0, T );B

s+1
q (Lp)). Moreover,

Lu, ut ∈ Lq,tδ0 ((0, T );B
s+δ0
q (Lp)), and the following estimate holds:

‖u‖W 1
q ((0,T );Bs

q (Lp))+

+ ‖u‖Lq((0,T );Bs+1
q (Lp))

+ ‖tδ0ut‖Lq((0,T );B
s+δ0
q (Lp))

+ ‖tδ0Lu‖
Lq((0,T );B

s+δ0
q (Lp))

≤

≤ C
(

‖f‖Lq((0,T );Bs
q (Lp)) + ‖tδ0f‖

Lq((0,T );B
s+δ0
q (Lp))

+ ‖u0‖Bs+1−1/q
q (Lp)

)

. (16)

Proof. Denote E := Lh(G) and consider an operator A defined by the equalities

D(A) := W 2
h (G;L0u = 0), Au := −

r
∑

s,j=1

asj(y)DsDju(y) + γ0u(y),

where, by [3, Theorem 8.2], there exists γ0 > 0 such that the operator A is an R-sectorial
operator in E with the R-angle φR

A < π. For x ∈ [0, 1], also consider operators

B(x)u := b(x, y)u(y) +

∫

G
c(x, y, z)u(z)dz,

A1(x)u :=

r
∑

j=1

bj(x, y)Dju(y) + b0(x, y)u(y) +

1
∑

ℓ=0

r
∑

j=1

∫

G
cℓj(x, y, z)D

ℓ
zju(z)dz − γ0u(y).

Then, the problem (9)–(12) can be rewritten in the form

∂u(t, x)

∂t
−

∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x) +A1(x)u(t, x)+

+ γu(t, x) = f(t, x), (t, x) ∈ (0, T ) × (0, 1),

αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk
∑

s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2,

u(0, x) = u0(x), x ∈ (0, 1),

(17)

where u(t, x) := u(t, x, ·), f(t, x) := f(t, x, ·), and u0(x) = u0(x, ·) are functions with
values in the UMD Banach space E := Lh(G), i.e., in the form of the problem (1)–(3). We
want now to apply Theorem 1 to problem (17). Conditions (7)-(8) of Theorem 1 follow

¶Note that here Bs
q(Lp) is constructed for the operator L in (4) corresponding to the below problem (17)

in the space X = Lp((0, 1);Lh(G)).
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from conditions (6)-(7). Conditions (1)-(6) of Theorem 1 follow from conditions (1)-(5).
This is the most difficult part of the proof and it was done in the proofs of Theorems 7
and 8 in [5].◭

Remark 3. Note that we have not been able to explicitly describe the spaces Bs
q(Lp) in

conditions (6) and (7) of Theorem 3, since their construction is rather complicated for our
general problems. For more special cases, the spaces can be explicitly described (see, e.g.,
[9, Section 4]).

Examples of Tks (at least for ∂G ∈ C∞) satisfying condition (5) of Theorem 3 (for
the proof see [5, p.52]):

1) (Tks)(y) := γksu(y), where γks ∈ C;

2) (Tks)(y) :=
∫

G

∑

|ℓ|≤1 Tksℓ(x, y)
∂|ℓ|u(x)

∂x
ℓ1
1
···∂xℓr

r

dx, where Tksℓ ∈ Lt′(G × G), 1
t′ +

1
t = 1,

t = min{h, h′}, 1
h′ +

1
h = 1, and Tksℓ(x, y) are continuously differentiable with respect to yj,

j = 1, . . . , r and ∂
∂yj

Tksℓ ∈ Lt′(G ×G). So, we consider, in particular, integro-differential

boundary conditions.

Let us now consider some possible application problem of our second abstract Theorem
2. As in the previous application, Ω = (0, 1)×G, G ⊂ R

r, r ≥ 2. Consider, in (0, T )×Ω,
the following parabolic initial boundary value problem

Dtu(t, x, y)−D2
xu(t, x, y) +B(x, y,Dy)Dxu(t, x, y) +A(x, y,Dy)u(t, x, y)+

+ γu(t, x, y) = f(t, x, y), (t, x, y) ∈ (0, T )× (0, 1) ×G,

D(m1)
x u(t, 0, y) = 0, D(m2)

x u(t, 1, y) = 0, (t, y)×G,

Bj(y
′,Dy)u(t, x, y

′) = 0, j = 1, ...,m, (t, x, y′) ∈ (0, T ) × (0, 1) × ∂G,

u(0, x, y) = u0(x, y), (x, y) ∈ (0, 1) ×G,

(18)

where

A(x, y,Dy) =
∑

|α|≤2m

aα(x, y)D
α
y , B(x, y,Dy) =

∑

|α|≤m

bα(x, y)D
α
y ,

Bj(y
′,Dy) =

∑

|α|≤mj

bj,α(y
′)Dα

y ,

Dt := ∂
∂t , Dx := ∂

∂x , Dy := (D1, . . . ,Dr), Dα
y := Dα1

1 Dα2

2 · · ·Dαr
r , Dj := ∂

∂yj
, α :=

(α1, α2, ..., αr), |α| = α1 + α2 + · · ·αr, y := (y1, . . . , yr), 0 ≤ mj ≤ 2m− 1; bα(x, y) ≡ 0 if
|α| = m, for x = 0, 1, y ∈ G.

We do not state here all restrictions on the data of the problem as in the previous
application. The reader can find them in [4, Section 4], where all necessary calculations
for using Theorem 2 can be found, too. Our purpose here is just to illustrate a problem
to which Theorem 2 can be applied. We would like to emphasize that due to the less
restrictive condition (3) on the operator B(x) in Theorem 2, in contrast to condition (5)
in Theorem 1, we can consider here the operator A of order 2m and the operator B of
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order m, at least for x ∈ (0, 1). This is not a case in application of Theorem 1, where the
operator B should be of order strictly less than m. Unfortunately, a remark similar to
Remark 3 is also applicable here.

3. Completeness of elementary solutions of abstract parabolic boundary

value problems and application to parabolic initial boundary value

problems

Consider the problem (1)–(3) with the homogeneous equation (1), i.e.,

∂u(t, x)

∂t
−

∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x) +A1(x)u(t, x)+

+ γu(t, x) = 0, (t, x) ∈ (0, T ) × (0, 1), (19)

αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk
∑

s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2, (20)

u(0, x) = u0(x), x ∈ (0, 1), (21)

where mk ∈ {0, 1}; γ > 0; αk, βk are complex numbers; xks ∈ [0, 1]; B(x), A1(x), for
x ∈ [0, 1], and A, Tks are, in general, unbounded operators in E.

Combining Theorem 1 and [6, Theorem 3.1] (or [6, Theorem 3.2]), we can get the
following theorems about an approximation of the unique solution of the problem (19)–
(21) by linear combinations of elementary solutions of (19)–(20). Recall that, e.g., by [11,
Lemma 2.1/1], a function of the form

uiki(t, x) := eλit

(

tki

ki!
ui0(x) +

tki−1

(ki − 1)!
ui1(x) + · · ·+ uiki(x)

)

, (22)

becomes the elementary solution of (19)–(20) if and only if ui0(x), ui1(x), . . . , uiki(x) is
a chain of root functions of the spectral problem

L(λ)u := λu(x)− u′′(x) +B(x)u′(x) +Au(x) +A1(x)u(x) − γu(x) = 0, (23)

Lku := αku
(mk)(0) + βku

(mk)(1) +

Nk
∑

s=1

Tksu(xks) = 0, k = 1, 2, (24)

corresponding to the eigenvalue λ = λi. The maximal possible ki for fixed i is denoted by
imax. In such a way, a system of functions {uiki(0, x)}, i = 1, 2, ..., ki = 0, 1, ..., imax , will
give us a system of all root functions corresponding to all eigenvalues of the problem (23)–
(24). For the exact definitions of the eigenvalues and the root functions of the problem
(23)–(24) see [6, Section 3].

First, consider the Hilbert spaces setting, i.e., we will use Theorems 1 and [6, Theorem
3.1]. So, we will denote by H the space E and by H(A) the space E(A) in order to
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distinguish between Hilbert and Banach spaces. We also refer the reader for the definitions
of the singular numbers sj and approximation numbers s̃j to [6, Section 3].

Note that the spaces Bs
q(L2) and Bs

q(Lp) in the below Theorems 4 and 5, respectively,
are constructed for the operator L given in (4), while in Theorem 6 the spaces Bs

q(L2)
are constructed for the operator L in (4) corresponding to the problem (17) in the space
X = L2((0, 1);Lh(G)).

Theorem 4. Let the following conditions be fulfilled:
(1) αk, βk are complex numbers; (−1)m1α1β2 − (−1)m2α2β1 6= 0; xks ∈ [0, 1];
(2) the embedding H(A) ⊂ H is compact and for some t > 0, for the embedding

operator J , we have that the singular numbers sj(J ;H(A),H) ≤ Cj−t, j = 1, 2, ...;
(3) the operator A is closed, densely defined in a Hilbert space H and for some ϕ, such

that max
{

2π
2+t ,

π
2

}

< ϕ < π,

‖R(λ,A)‖ ≤ C(1 + |λ|)−1, | arg λ| ≥ π − ϕ;

(4) for any ε > 0 and for almost every x ∈ [0, 1], there exists C(ε) > 0 such that

‖B(x)u‖ ≤ ε‖A
1

2u‖+ C(ε)‖u‖, u ∈ D(A
1

2 ),

‖A1(x)u‖ ≤ ε‖Au‖ + C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1

2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u are measurable
on [0, 1] in H;

(5) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (H(A),H) 1

4
,2,

‖Tksu‖(H(A),H) 3
4
,2
≤ ε‖u‖(H(A),H) 1

4
,2
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(H(A),H) 1
2
,2
+ C(ε)‖u‖;

(6) u0 ∈ W 2
2

(

(0, 1);H(A),H;Lku = 0, k = 1, 2
)

, where Lku := αku
(mk)(0)+βku

(mk)(1)+
∑Nk

s=1 Tksu(xks), k = 1, 2.
Then, there exists sufficiently large γ > 0 in (19) such that the problem (19)–(21) has

a unique solution u(t, x) with u(t, x) ∈ W 1
q ((0, T );B

s
q (L2))∩Lq((0, T );B

s+1
q (L2)), for any

1 < q < ∞, s < 1/q, and there exist numbers Cn
iki

such that for the solution u(t, x) we
have, ∀δ0 > 0

lim
n→∞

(
∥

∥

∥
u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

∥

∥

∥

W 1
q ((0,T );Bs

q (L2))
+

+
∥

∥

∥
u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

∥

∥

∥

Lq((0,T );Bs+1
q (L2))

+

+
∥

∥

∥
tδ0

∂

∂t

(

u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

)
∥

∥

∥

Lq((0,T );B
s+δ0
q (L2))

)

= 0, (25)

where uiki(t, x) are elementary solutions (22) of (19)–(20).
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Proof. By [6, Theorem 3.1], where we take A1(x)−γI instead of A1(x), a system of root
functions of the problem (23)–(24) is complete in W 2

2

(

(0, 1); H(A),H;Lku = 0, k = 1, 2
)

.
Hence, there exist numbers Cn

iki
such that

lim
n→∞

∥

∥

∥
u0(x)−

n
∑

i=1

imax
∑

ki=0

Cn
iki

uiki(0, x)
∥

∥

∥

W 2
2
((0,1);H(A),H)

= 0, (26)

where uiki(t, x) are elementary solutions (22) of (19)–(20). On the other hand, W 2
2

(

(0, 1);

H(A),H; Lku = 0, k = 1, 2
)

⊂ B
s+1−1/q
q (L2), for any 1 < q < ∞, s < 1/q (see [9,

Assertion 1]). Then, from Theorem 1 (recall that in the framework of Hilbert spaces,
R-boundedness in condition (1) of Theorem 1 is just a norm-boundedness in condition
(3)), we get that the problem (19)–(21) has a unique solution u(t, x) such that u(t, x) ∈
W 1

q ((0, T );B
s
q (L2)) ∩ Lq((0, T );B

s+1
q (L2)) and the corresponding estimate in Theorem 1,

with f = 0, is fulfilled. Then, u(t, x) −
∑n

i=1

∑imax

ki=0 C
n
iki

uiki(t, x) is a unique solution of
the problem (19)–(21), but with the initial function

u0(x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(0, x),

and, from the corresponding estimate in Theorem 1, one gets

∥

∥

∥
u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

∥

∥

∥

W 1
q ((0,T );Bs

q (L2))
+

+
∥

∥

∥
u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

∥

∥

∥

Lq((0,T );Bs+1
q (L2))

+

+
∥

∥

∥
tδ0

∂

∂t

(

u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

)∥

∥

∥

Lq((0,T );B
s+δ0
q (L2))

≤

≤ C
∥

∥

∥
u0(x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(0, x)

∥

∥

∥

B
s+1−1/q
q (L2)

≤

≤ C
∥

∥

∥
u0(x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(0, x)

∥

∥

∥

W 2
2
((0,1);H(A),H)

. (27)

The use of (26) completes the proof.◭

Consider now problem (19)-(21) in a separable, reflexive UMD Banach space E.

Theorem 5. Let the spectrum of the operator L in (4) be non empty; for some s > 0, the
approximation numbers

s̃j(J ;W
2
p ((0, 1);E(A), E), Lp((0, 1);E)) ≤ Cj−s,
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and let all the conditions of [5, Theorem 6] (see Theorem 9 in the Appendix) be satisfied.
Moreover, let the condition (2) of [5, Theorem 6] is satisfied for some 2−s

2 π < ϕ < π if
0 < s ≤ 1 and for some π

2 < ϕ < π if s > 1; finally, u0 ∈ W 2
p

(

(0, 1);E(A), E;Lku =

0, k = 1, 2
)

, where Lku := αku
(mk)(0) + βku

(mk)(1) +
∑Nk

s=1 Tksu(xks), k = 1, 2.

Then, there exists sufficiently large γ > 0 in (19) such that the problem (19)–(21) has
a unique solution u(t, x) with u(t, x) ∈ W 1

q ((0, T );B
s
q (Lp))∩Lq((0, T );B

s+1
q (Lp)), for any

1 < q < ∞, s < 1/q, and there exist numbers Cn
iki

such that for the solution u(t, x) we
have, ∀δ0 > 0

lim
n→∞

(
∥

∥

∥
u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

∥

∥

∥

W 1
q ((0,T );Bs

q (Lp))
+

+
∥

∥

∥
u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

∥

∥

∥

Lq((0,T );Bs+1
q (Lp))

+

+
∥

∥

∥
tδ0

∂

∂t

(

u(t, x)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x)

)∥

∥

∥

Lq((0,T );B
s+δ0
q (Lp))

)

= 0,

where uiki(t, x) are elementary solutions (22) of (19)–(20).

Proof. The proof is the same as that of Theorem 4. We only use [6, Theorem 3.2]
instead of [6, Theorem 3.1].◭

Show an application of Theorem 4. In fact, all necessary data are given in the ap-
plication part of Section 2. We just consider the homogeneous equation (instead of the
nonhomogeneous equation (9))

Dtu(t, x, y)−D2
xu(t, x, y) + b(x, y)Dxu(t, x, y) +

∫

G
c(x, y, z)Dxu(t, x, z)dz−

−

r
∑

s,j=1

asj(y)DsDju(t, x, y) +

r
∑

j=1

bj(x, y)Dju(t, x, y) + b0(x, y)u(t, x, y)+

+

1
∑

ℓ=0

r
∑

j=1

∫

G
cℓj(x, y, z)D

ℓ
zju(t, x, z)dz + γu(t, x, y) =

= 0, (t, x, y) ∈ (0, T ) × (0, 1) ×G, (28)

with boundary conditions (10)–(11) and initial condition (12).

Theorem 6. Assume that conditions (1)-(5) (with p = h = 2) of Theorem 3 are fulfilled
(conditions (2)-(3) with some 0 < β < π − 2πr

2r+2), and condition (6) of Theorem 4 is also

fulfilled, where H(A) = W 2
2 (G;L0u = 0), H = L2(G), and L0, Lk are defined in (10)–(11).

Then, there exists sufficiently large γ > 0 in (28) such that the problem (28), (10)–(12)
has a unique solution u(t, x, y) with u(t, x, y) ∈ W 1

q ((0, T );B
s
q (L2))∩Lq((0, T ); B

s+1
q (L2)),
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for any 1 < q < ∞, s < 1/q, and there exist numbers Cn
iki

such that for the solution
u(t, x, y) we have, ∀δ0 > 0

lim
n→∞

(
∥

∥

∥
u(t, x, y)−

n
∑

i=1

imax
∑

ki=0

Cn
iki

uiki(t, x, y)
∥

∥

∥

W 1
q ((0,T );Bs

q (L2))
+

+
∥

∥

∥
u(t, x, y) −

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x, y)

∥

∥

∥

Lq((0,T );Bs+1
q (L2))

+

+
∥

∥

∥
tδ0

∂

∂t

(

u(t, x, y)−

n
∑

i=1

imax
∑

ki=0

Cn
ikiuiki(t, x, y)

)
∥

∥

∥

Lq((0,T );B
s+δ0
q (L2))

)

= 0,

where uiki(t, x, y) := eλit
(

tki
ki!

ui0(x, y) +
tki−1

(ki−1)!ui1(x, y) + · · · + uiki(x, y)
)

are elementary

solutions of the system (28), (10)–(11), i.e., ui0(x, y), ui1(x, y), . . . , uiki(x, y) is a chain of
root functions of the spectral problem corresponding to (28), (10)–(11).

Proof. We use Theorem 4. As in the proof of [6, Theorem 3.3], we note that all
operators and all necessary explanations are the same as in the proof of Theorem 3. As
in the proof of [6, Theorem 3.3], the only thing we have to do is to check condition (2)
and the corresponding restriction on ϕ in condition (3) of Theorem 4. In our case, they
are the same as in [6, Theorem 3.1], (which have been checked in the proof of [6, Theorem
3.3]), since max

{

2π
2+t ,

π
2

}

= 2π
2+t for t = 2

r and r ≥ 2.◭

Remark 4. A remark similar to Remark 3 is also applicable here.

Remark 5. This section is written only for the problem (1)–(3) and not for the problem
(5)–(7). We have essentially used here our previous result [6, Theorem 3.1]. In fact, a
result similar to [6, Theorem 3.1] can be also obtained for the homogeneous spectral problem
corresponding to the problem (5)–(6) due to [4, Theorem 2.3]. Recall that in [4, Theorem
2.3] we have obtained the R-boundedness property which implies, in particular, norm-
boundedness and this is enough for proving the corresponding theorem like [6, Theorem
3.1]. So, one can rewrite this section for the problem (5)–(7) with the corresponding
changes, but it would be too much in the framework of one paper.

4. Appendix

Consider the Cauchy problem

u′(t) = Lu(t) + f(t), t ∈ (0, T ),

u(0) = u0,
(29)

in a Banach space X. For the definition of the spaces Bs
q(X) see the beginning of Section

2.
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Theorem 7. ([9, Theorem 4]) Let the following conditions be satisfied

(1) L is a linear closed operator in X and, for some α ∈ (0, π2 ),

‖R(λ,L)‖B(X) ≤ C(1 + |λ|)−1, | arg λ| ≤
π

2
+ α;

(2) f ∈ Lq((0, T );B
s
q (X))∩Lq,tδ0 ((0, T );B

s+δ0
q (X)), for some δ0 > 0, q ∈ (1,∞), s ∈ R;

(3) u0 ∈ B
s+1−1/q
q (X).

Then, the problem (29) has a unique solution such that

u ∈ W 1
q ((0, T );B

s
q (X)) ∩ Lq((0, T );B

s+1
q (X)).

Moreover, Lu, ut ∈ Lq,tδ0 ((0, T );B
s+δ0
q (X)), and the following estimate holds:

‖u‖W 1
q ((0,T );Bs

q (X))+‖u‖Lq((0,T );Bs+1
q (X))+‖tδ0ut‖Lq((0,T );B

s+δ0
q (X))

+‖tδ0Lu‖
Lq((0,T );B

s+δ0
q (X))

≤

≤ C
(

‖f‖Lq((0,T );Bs
q (X)) + ‖tδ0f‖

Lq((0,T );B
s+δ0
q (X))

+ ‖u0‖Bs+1−1/q
q (X)

)

.

Theorem 8. ([9, Theorem 5]) Let the following conditions be satisfied

(1) L is a linear closed operator in a UMD Banach space X and, for some α ∈ (0, π2 ),

R{λR(λ,L) : | arg λ| ≤
π

2
+ α} < ∞;

(2) f ∈ Lq((0, T );B
s
q (X)) ∩ Lq,t−s((0, T );X), for some q ∈ (1,∞), s ≤ 0, s 6= 1/q − 1;

(3) u0 ∈ B
s+1−1/q
q (X).

Then, the problem (29) has a unique solution such that

u ∈ W 1
q ((0, T );B

s
q (X)) ∩ Lq((0, T );B

s+1
q (X)).

Moreover, Lu, ut ∈ Lq,t−s((0, T );X), and the following estimate holds:

‖u‖W 1
q ((0,T );Bs

q (X)) + ‖u‖Lq((0,T );Bs+1
q (X)) + ‖t−sut‖Lq((0,T );X) + ‖t−sLu‖Lq((0,T );X) ≤

≤ C
(

‖f‖Lq((0,T );Bs
q (X)) + ‖t−sf‖Lq((0,T );X) + ‖u0‖Bs+1−1/q

q (X)

)

.

Consider, in a Banach space E, an abstract elliptic boundary value problem with a
parameter

L(λ)u := λu(x)− u′′(x) +B(x)u′(x) +Au(x) +A1(x)u(x) = f(x),

Lku := αku
(mk)(0) + βku

(mk)(1) +

Nk
∑

s=1

Tksu(xks) = fk, k = 1, 2,
(30)

where λ is a complex parameter, mk ∈ {0, 1}; αk, βk are complex numbers; xks ∈ [0, 1];
B(x), A1(x), for x ∈ [0, 1], and A, Tks are, in general, unbounded operators in E.
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Theorem 9. ([5, Theorem 6]) Let the following conditions be satisfied:

(1) A is a closed, densely defined operator in a UMD Banach space E;

(2) R{λR(λ,A) : | arg λ| ≥ π − ϕ} < ∞ for some 0 ≤ ϕ < π;‖

(3) the embedding E(A) ⊂ E is compact;

(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;

(5) for any ε > 0 and for almost every x ∈ [0, 1], there exists C(ε) > 0 such that

‖B(x)u‖ ≤ ε‖A
1

2u‖+ C(ε)‖u‖, u ∈ D(A
1

2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1

2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u are
measurable on [0, 1] in E;

(6) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (E(A), E) 1

2p
,p, where

p ∈ (1,∞),

‖Tksu‖(E(A),E) 1
2
+ 1

2p ,p
≤ ε‖u‖(E(A),E) 1

2p ,p
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(E(A),E) 1
2
,p
+ C(ε)‖u‖.

Then, the operator L(λ) : u → L(λ)u :=
(

L(λ)u,L1u,L2u
)

, for | arg λ| ≤ ϕ and

sufficiently large |λ|, is an isomorphism from W 2
p ((0, 1);E(A), E) onto Lp((0, 1);E) ∔

(E(A), E)θ1 ,p∔(E(A), E)θ2 ,p, where θk = mk
2 + 1

2p , and with these λ, the following estimate
holds for the solution of (30):

|λ|‖u‖Lp((0,1);E) + ‖u′′‖Lp((0,1);E) + ‖Au‖Lp((0,1);E)

≤ C
[

‖f‖Lp((0,1);E) +

2
∑

k=1

(

‖fk‖(E(A),E)θk,p
+ |λ|1−θk‖fk‖

)]

;
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‖In the original version, there was a misprint that the R-boundedness is claimed in the angle, but for
sufficiently large λ. In fact, one can see from the proof of [5, Theorem 6], that by replacing A and A1(x)
with A + M0I and A1(x) − M0I , respectively, for some sufficiently large M0 > 0, the latter can also be
treated.
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