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Existence of Positive Solution for a Coupled Hybrid Sys-
tem of Quadratic Fractional Integral Equations

Y. Gholami∗, K. Ghanbari

Abstract. In this paper, we study the solvability of coupled hybrid systems of quadratic fractional
integral equations. Applying hybrid fixed point theory, due to B. C. Dhage, the existence of at least
one positive solution for mentioned systems is proved. At the end, illustrating obtained results, an
example is given.
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1. Introduction

The fractional calculus is the theory of arbitrary order integrations and differentiations
that generalizes the integer order ones in classic differential calculus. Not only in theoret-
ical manner, but also as a result of more accurate description of real world phenomena in
comparison with classic differential calculus, we can observe the boom of developments of
theory of fractional calculus in less than three decades in almost whole sciences related to
mathematics such as biosciences, medicine, engineering, economy and so on. More details
and applications can be found in the monographs and papers [25],[23],[1]-[12],[14]-[20].

On the other hand, the theory of integral equations by itself has been introduced
as full applicable theory in mathematics and great theories such as geomagnetic theory,
transport theory, mechanics and so forth. So we can conclude that the combination of
fractional calculus and integral equations may provide more effective tool for analysis and
description of topics mentioned above. In this way more interesting applications can be
found in references [24],[26] and references cited therein.

In this paper, we study so called quadratic fractional integral equations, namely the
integral equations of the form

x(t) = f(t) +A(t)

∫ t

0

(t− s)α−1

Γ(α)
u(s, x(s))ds, t ∈ J = [0, T ], T, α > 0,
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where f : J → R and u : J × R→ R are given functions and A : C(J,R)→ C(J,R) is an
appropriate operator. Let us now state our main motivations for preparing this paper.
The authors in [22], by means of Dhage hybrid fixed point theory, obtained periodic
solutions of integral equation

x(t) =
n∑
i=1

fi(t, x(ai(t))).

∫
R
ki(t, s)gi(s, x(bi(s)))ds.

The authors in [13] considered the fractional order integral equation

x(t) = f(t, x(t)) + g(t, x(t))

∫ t

0

(t− s)α−1

Γ(α)
u(s, x(s))ds, t ∈ J = [0, 1], α > 0,

and via above mentioned theory proved the existence of at least one solution for this frac-
tional integral equation.
In this paper, we consider the coupled hybrid system of fractional quadratic integral equa-
tions

u(t) =
n∑
i=1

{
k1,i(t, u(t), v(t)) + g1,i(t, u(t), v(t)).

∫ t

0

(t− s)αi−1

Γ(αi)
f1,i(s, u(s), v(s))ds

}
,

v(t) =
n∑
j=1

{
k2,j(t, u(t), v(t)) + g2,j(t, u(t), v(t)).

∫ t

0

(t− s)βj−1

Γ(βj)
f2,j(s, u(s), v(s))ds

}
,

(1)
where t ∈ J = [0, T ], T, αi, βj ∈ R+, i, j = 1, 2, ..., n.
Assume that the following necessary conditions are satisfied throughout this paper.

(A1) k1,i ∈ C(J×R2,R+) for i = 1, 2, ..., n and there exist positive constants L1,k1,i , L2,k1,i ,
ρk1,i with L1,k1,i ≤ L2,k1,i such that

|k1,i(t, u1, .)− k1,i(t, u2, .)| ≤
1

2n

(
L1,k1,i |u1 − u2|
L2,k1,i + |u1 − u2|

)
, t ∈ J, u1, u2 ∈ C(R),

also assume that

sup k1,i(t, u, v) = ρk1,i , i = 1, 2, ..., n, t ∈ J, u, v ∈ C(R).

(A2) g1,i ∈ C(J×R2,R+) for i = 1, 2, ..., n and there exist positive constants L1,g1,i , L2,g1,i ,
ρg1,i with L1,g1,i ≤ L2,g1,i such that

|g1,i(t, u1, .)− g1,i(t, u2, .)| ≤
1

2nMi

(
L1,g1,i |u1 − u2|
L2,g1,i + |u1 − u2|

)
, t ∈ J, u1, u2 ∈ C(R),

where Mi = ‖Iαi

0+
f1,i(., u, v)‖, also suppose that

sup g1,i(t, u, v) = ρg1,i , i = 1, 2, ..., n, t ∈ J, u, v ∈ C(R).
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(A3) f1,i, f2,j ∈ C(J× R2,R+) for i, j = 1, 2, ..., n and

sup f1,i(t, u, v) = θ1,i, sup f2,j(t, u, v) = θ2,j , i, j = 1, 2, ..., n, t ∈ J, u, v ∈ C(R).

(A4) If i, u and α in the conditions (A1), (A2) are replaced by j, v and β, respectively,
then the corresponding conditions will be satisfied for k2,j , g2,j for j = 1, 2, ..., n in
hybrid system (1).

2. Preliminaries

This section contains two steps. First, we present some concepts from fractional calcu-
lus that will be needed in the sequel, and then, in preparatory manner we briefly overview
the hybrid fixed point theory.

Definition 1 ([23]). The Riemann-Liouville fractional integral of order α > 0 for function
f : (0,∞)→ R is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, (2)

provided that the right hand side is point-wise defined on (0,∞).

Definition 2 ([23]). The Riemann-Liouville fractional derivative of order α > 0 for func-
tion f : (0,∞)→ R is given by

Dα
0+f(t) =

1

Γ(n− α)

(
dn

dtn

)∫ t

0
(t− s)n−α−1f(s)ds, (3)

provided that the right hand side is point-wise defined on the positive half axis.

Remark 1 ([25]). Fractional differentiation of power functions is given by

Dα
0+t

β =
Γ(β + 1)

Γ(β − α+ 1)
tβ−α, t > 0, α > 0, β > −1. (4)

Clearly, replacing α with −α gives us fractional integration of power functions.

In what follows we will use the Banach space (B, ‖.‖B):

B = E × E, E = {u| u ∈ C(J,R)},
‖(u, v)‖B = ‖u‖E + ‖v‖E , ‖u‖E = max

t∈J
{u(t)| u ∈ E}.

Define the set S ⊂ B as

S = {(u, v) ∈ B| u(t), v(t) ≥ 0, t ∈ J, ‖(u, v)‖B ≤ r}
= {u, v ∈ E| u(t), v(t) ≥ 0, t ∈ J, ‖u‖E + ‖v‖E ≤ r}.

(5)
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Definition 3. We define the fractional integral operators T1, T2 : E → E by

T1,u(t) =
n∑
i=1

{
k1,i(t, u(t), v(t)) + g1,i(t, u(t), v(t)).

∫ t

0

(t− s)αi−1

Γ(αi)
f1,i(s, u(s), v(s))ds

}
,

T2,v(t) =
n∑
j=1

{
k2,j(t, u(t), v(t)) + g2,j(t, u(t), v(t)).

∫ t

0

(t− s)βj−1

Γ(βj)
f2,j(s, u(s), v(s))ds

}
.

(6)

Now we can define the operator T : B→ B as follows

T(u, v) = (T1,u, T2,v). (7)

Definition 4 ([1]). Let X be a normed vector space. A mapping T : X → X is said
to be D-Lipschitzian, provided that there exists a continuous and nondecreasing function
ψT : R+ → R+ such that for x, y ∈ X∥∥Tx− Ty∥∥ ≤ ψT(‖x− y‖), ψT (0) = 0.

Remark 2 ([11]). Every Lipschitzian mapping is D-Lipschitzian and if ψT (r) < r, then
T is called nonlinear D-contraction on X with D-function ψT .

Remark 3 ([11]). Every nonlinear D-contraction is D-Lipschitzian while the reverse may
not hold.

Definition 5 ([21]). Let X be a normed space and suppose S ⊂ X. A finite set of N balls
B(xn, ε) with xn ∈ X and ε > 0 is said to be a finite ε−covering of S, provided that every
element of S lies inside one of the balls B(xn, ε), i.e.

S ⊂
N⋃
n=1

B(xn, ε).

The set of centers {xn} of a finite ε-covering is called a finite ε−net for S.

Definition 6 ([21]). Let X be a normed space. A set S ⊂ X is said to be totally bounded
if and only if it has a finite ε−covering for every ε > 0.

Theorem 1 ([21]). [Hausdorff compactness criterion] Assume that X is a normed space.
A set S ⊂ X is compact if and only if it is closed and totally bounded.

Theorem 2 ([1]). [Dhage fixed point theorem] Assume that S is a nonempty closed convex
and bounded subset of Banach algebra X. Let A,C : X → X and B : S → X be three
operators with the following properties:

(i) A,C are D-Lipschitzian with D-functions φA and φC , respectively.

(ii) B is completely continuous.

(iii) x = Ax+ CxBy ⇒ x ∈ S, for all y ∈ S.

(iv) φA(r) +MφC(r) < r, for r > 0, where M =
∥∥B(S)

∥∥.

Then the operator Ax+ CxBx has a fixed point in S.
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3. Main Results

Theorem 3. Suppose that the conditions (A1) − (A4) hold. Then the fractional hybrid
system (1) has at least one positive solution in S.

Proof. We are going to carry out the proof in three steps as follows:

(S1) Suppose that

A1,iu(t) =

n∑
i=1

k1,i(t, u(t), v(t)),

C1,iu(t) = g1,i(t, u(t), v(t)), i = 1, 2, ..., n,

B1,iu(t) =

∫ t

0

(t− s)αi−1

Γ(αi)
f1,i(s, u(s), v(s))ds, i = 1, 2, ..., n,

(8)

A2,jv(t) =
n∑
j=1

k2,j(t, u(t), v(t)),

C2,jv(t) = g2,j(t, u(t), v(t)), j = 1, 2, ..., n,

B2,jv(t) =

∫ t

0

(t− s)βj−1

Γ(βj)
f2,j(s, u(s), v(s))ds, j = 1, 2, ..., n.

(9)

Define

A1,i,2,j(u, v)(t) =


n∑
i=1

k1,i(t, u(t), v(t))

n∑
j=1

k2,j(t, u(t), v(t))

 , (10)

C1,i,2,j(u, v)(t) =

g1,i(t, u(t), v(t)) 0

0 g2,j(t, u(t), v(t))

 , i, j = 1, 2, ..., n, (11)

B1,i,2,j(u, v)(t) =


∫ t

0

(t− s)αi−1

Γ(αi)
f1,i(s, u(s), v(s))ds

∫ t

0

(t− s)βj−1

Γ(βj)
f2,j(s, u(s), v(s))ds

 , i, j = 1, 2, ..., n. (12)

Now we can transform the operator T(u, v) defined by (7) to the operator

T(u, v)(t) = A1,i,2,j(u, v)(t) +
∑
i

∑
j

C1,i,2,j(u, v)(t)B1,i,2,j(u, v)(t), (13)

such that the above double summation acts on (i, j) = (1, 1), (2, 2), ..., (n, n).
We shall show in this step that T(u, v) is a nonlinear D-contraction with D-function

ψu,v =

n∑
i=1

ψk1,i +

n∑
j=1

ψk2,j +
∑
i

∑
j

{ψg1,iMi + ψg2,jMj}, (14)
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where (i, j) = (1, 1), (2, 2), ..., (n, n) and ψk1,i , ψk2,j , ψg1,i , ψg2,j are D-functions
corresponding to the nonlinear D-contractions k1,i, k2,j , g1,i, g2,j . By the conditions
(A1), (A4) we have

‖A1,i,2,j(u1, v1)−A1,i,2,j(u2, v2)‖B ≤

≤
n∑
i=1

‖k1,i(., u1, v1)− k1,i(., u2, v2)‖E +
n∑
j=1

‖k2,j(., u1, v1)− k2,j(., u2, v2)‖E ≤

≤
n∑
i=1

L1,k1,i‖u1 − u2‖E
2n
(
L1,k1,i + ‖u1 − u2‖E

) +
n∑
j=1

L2,k2,j‖v1 − v2‖E
2n
(
L2,k2,j + ‖v1 − v2‖E

) <
<
‖u1 − u2‖E

2
+
‖v1 − v2‖E

2
=
‖(u1, v1)− (u2, v2)‖B

2
.

(15)

Thus, k1,i, k2,j are two nonlinear D-contractions with corresponding D-functions

ψk1,i(r) =
L1,k1,ir

2n(L1,k1,i + r)
, ψk2,j (r) =

L2,k2,jr

2n(L2,k2,j + r)
, i, j = 1, 2, ..., n. (16)

It follows that A1,i,2,j(u, v) is a nonlinear D-contraction with corresponding D-
function

ψA1,i,2,j (r) =

 n∑
i=1

ψk1,i +

n∑
j=1

ψk2,j

 r. (17)

Similarly, by means of conditions (A2), (A4) we conclude that∑
i

∑
j

‖C1,i,2,jB1,i,2,j(u1, v1)− C1,i,2,jB1,i,2,j(u2, v2)‖B ≤

≤
∑
i

∑
j

{
‖g1,i(., u1, v1)− g1,i(., u2, v2)‖E‖Iαi

0+
f1,i‖E+

+ ‖g2,j(., u1, v1)− g2,j(., u2, v2)‖E‖I
βj
0+
f2,j‖E

}
≤

≤
∑
i

∑
j

{
L1,g1,i‖u1 − u2‖EMi

2nMi

(
L1,g1,i + ‖u1 − u2‖E

) +
L2,g2,j‖v1 − v2‖EMj

2nMj

(
L2,g2,j + ‖v1 − v2‖E

)} <

<
‖u1 − u2‖E

2
+
‖v1 − v2‖E

2
=
‖(u1, v1)− (u2, v2)‖B

2
,

(18)

for (i, j) = (1, 1), (2, 2), ..., (n, n). Hence we deduce that both of operators g1,i, g2,j
are nonlinear D-contractions with corresponding D-functions

ψg1,i(r) =
L1,g1,ir

2nMi(L1,g1,i + r)
, ψg2,j (r) =

L2,g2,jr

2nMj(L2,g2,j + r)
, i, j = 1, 2, ..., n. (19)
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Therefore we conclude that
∑

i

∑
j C1,i,2,jB1,i,2,j(u, v) is a nonlinear D-contraction

with corresponding D-function

ψC1,i,2,j (r) =
∑
i

∑
j

[
ψg1,iMi + ψg2,jMj

]
r, (i, j) = (1, 1), (2, 2), ..., (n, n). (20)

At last, by means of (15)-(20) one can observe that T(u, v) defined by (13) is a
nonlinear D-contraction with corresponding D-function ψu,v defined by (14). So
(S1) is complete now.

(S2) In this step we must prove that the operatorB1,i,2,j(u, v) defined by (12) is completely
continuous on S defined by (5). First, applying the Hausdorff compactness criterion
given by Theorem 1, we will prove that S is a compact subset of Banach space B.
It is clear that S ⊂ B is a cone in B. Let us define the bounded subset Su ⊂ B as
follows

Su = {u ∈ E| u(t) ≥ 0, ‖u‖E ≤ r, t ∈ J}. (21)

Clearly, Su is closed. As we know, each closed subset of a complete space is complete.
Thus, as a result of equicontinuity of u(t), the Arzela-Ascoli theorem implies that Su
is relatively compact. Hence Theorem 1 ensures that Su is totally bounded. Thus,
by Definition 6 we conclude that there exists a finite ε−covering

Uε(ui), i = 1, 2, 3, ..., l1,

such that

Su ⊂
l1⋃
i=1

Uε(ui), (22)

where

Uε(ui) = {u ∈ Su| ‖u− ui‖E < ε}. (23)

Define

Si = {(u, v) ∈ Su × Su| u, v ∈ Uε(ui)} .

It is easy to see that S ⊂ Su × Su ⊂
⋃
i Si, 1 ≤ i ≤ l1.

In fact, if we take (ui, vi) ∈ Si, then Su × Su can be covered by finite 4ε−covering

U4ε(ui, vi) =
{

(u, v) ∈ Su × Su
∣∣ ‖(u, v)− (ui, vi)‖B < 4ε

}
.

In other words, for every (u, v) ∈ Su × Su, there exists an index k such that

u, v ∈ Uε(uk).
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Therefore

|u− ui| ≤ |u− uk|+ |uk − ui| < ε+ ε = 2ε,

|v − vi| ≤ |v − uk|+ |uk − vi| < ε+ ε = 2ε.
(24)

(24) implies that ‖(u, v)− (ui, vi)‖B < 4ε. Hence S has a finite 4ε−covering. There-
fore, using Theorem 1 we conclude that S is compact.
Turning back to the definition of B1,i,2,j(u, v) given by (12) and considering the con-
dition (A3), we conclude that B1,i,2,j(u, v) is continuous on S. Thus, B1,i,2,j(S) is
completely continuous on S. This completes the (S2).

(S3) In the last step we are going to show that if

u∗ =

n∑
i=1

{
k1,i(., u∗, v) + g1,i(., u∗, v).Iαi

0+
f1,i(., u∗, v)

}
,

v∗ =

n∑
j=1

{
k2,j(., u, v∗) + g2,j(., u, v∗).I

βj
0+
f2,j(., u, v∗)

}
,

(25)

then (u∗, v∗) ∈ S for all (u, v) ∈ S. By means of conditions (A1)− (A4), it is easy to
check that

T1,u(t) ≤
n∑
i=1

Γ(αi + 1)ρk1,i + ρg1,iθ1,iT
αi

Γ(αi + 1)
= r1,

T2,v(t) ≤
n∑
j=1

Γ(βj + 1)ρk2,j + ρg2,jθ2,jT
βj

Γ(βj + 1)
= r2.

(26)

On the other hand, ‖T(u, v)‖B = ‖T1,u‖E + ‖T2,v‖E . So we have

‖T(u, v)‖B ≤ r = 2 max{r1, r2}.

Equivalently, the recent inequality shows that T(S) ⊂ S, that is if (25) is satisfied,
then (u∗, v∗) ∈ S for all (u, v) ∈ S. So (S3) is completed.

Since all of the conditions (i) − (iv) in Theorem 2 hold, the coupled hybrid system of
fractional quadratic integral equations (1) has at least one positive solution in S.J

4. An Example

Let us consider the coupled hybrid system of FQIEs
u(t) =

n∑
i=1

{
k1,i(t, u(t), v(t)) + g1,i(t, u(t), v(t))

∫ t

0

(t− s)αi−1

Γ(αi)
f1,i(s, u(s), v(s))ds

}
,

v(t) =

n∑
j=1

{
k2,j(t, u(t), v(t)) + g2,j(t, u(t), v(t))

∫ t

0

(t− s)βj−1

Γ(βj)
f2,j(s, u(s), v(s))ds

}
.

(27)
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Take n = 1, J = [0, 1] and α = β = 3
2 . Setting

k1,1(t, u, v) = t2[u(t)+v(t)]
6 , g1,1(t, u, v) = t2u(t)

6 , f1,1(t, u, v) = sin(t2 + u(t) + v(t)),

k2,1(t, u, v) = t3v(t)
4 , g2,1(t, u, v) = t3u(t)v(t)

1+4u(t) , f2,1(t, u, v) = sin(t3 + u(t) + v(t)),

(28)
by direct calculation we have

M1 = M2 =
1

Γ(32)
=

2√
π
.

Thus we conclude that

|k1,1(t, u1, v)− k1,1(t, u2, v)| ≤ |u1 − u2|
2(1 + |u1 − u2|)

,

|g1,1(t, u1, v)− g1,1(t, u2, v)| ≤ |u1 − u2|
2M1(1 + |u1 − u2|)

,

|k2,1(t, u, v1)− k2,1(t, u, v2)| ≤
|v1 − v2|

2(1 + |v1 − v2|)
,

|g2,1(t, u, v1)− g2,1(t, u, v2)| ≤
|v1 − v2|

2M2(1 + |v1 − v2|)
.

Since all of the conditions (A1)− (A4) hold, according to Theorem 3 we deduce that the
coupled hybrid system of FQIEs (27) has at least one positive solution in S.
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