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Abstract. By using a sequence λn > 0, n ∈ N with the property λn → 0 as fast as we want, in this
paper we obtain the approximation order O(λn) for some generalized Szász, Szász-Kantorovich,
and Baskakov complex operators attached to entire functions or to analytic functions of exponential
growth in compact disks which do not involve the values on [0,+∞).
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1. Introduction

In [2], with the notations there for two sequences an and bn, n ∈ N, and denoting here
λn = bn

an
, the authors introduced the generalized complex Szász operator by

Sn(f ;λn)(z) = e−z/λn

∞
∑

j=0

(z/λn)
j

j!
f(jλn), (1)

where λn > 0, λn → 0.
For this operator, attached to functions f : DR

⋃

[R,+∞) → C of exponential growth
in DR

⋃

[R,+∞), analytic in the disk DR = {z ∈ C; |z| < R}, R > 1 and continuous on
[0,+∞), the exact order of approximation O(λn) is obtained in [2]. Also, in the same
paper a Voronovskaja-type result with an upper estimate of order O(λ2

n) is proved.
The first goal of the present paper is to extend, in Section 2, the results in [2] to the case

of entire functions and then to a kind od Szász operator which does not involve the values
of f on [0,+∞). Also, a complex operator of Szász-Kantorovich type is introduced, for
which similar results are proved, essentially improving the order of approximation O(1/n)
obtained in [9].

The second goal is to introduce, in Section 3, generalized complex Baskakov operators,
for which results similar to those obtained in Section 2 are proved.

∗Corresponding author.

http://www.azjm.org 3 c© 2010 AZJM All rights reserved.



4 S.G. Gal, N.I. Mahmudov, B.D. Opris

2. Generalized Szász and Szász-Kantorovich Complex Operators

In the case of complex Szász operator, we can prove the following result.

Theorem 1. Let λn > 0, n ∈ N be such that λn → 0 as fast as we want. Let f : DR → C,
1 < R ≤ +∞, i.e. f(z) =

∑∞
k=0 ckz

k, for all z ∈ DR. Suppose that there exist M > 0 and

A ∈ (1/R, 1), such that |ck| ≤ M Ak

k! , for all k = 0, 1, ..., (which implies |f(z)| ≤ MeA|z|

for all z ∈ DR). Consider 1 ≤ r < 1
A .

(i) If R = +∞, (1/R = 0), i.e. f is an entire function, then Sn(f ;λn)(z) is an entire
function, for all z ∈ C, n ∈ N we have Sn(f ;λn)(z) =

∑∞
k=0 ckSn(ek;λn)(z) and for all

|z| ≤ r the following estimates hold

|Sn(f ;λn)(z) − f(z)| ≤ Cr,M,A λn,

|S(p)
n (f ;λn)(z) − f (p)(z)| ≤ p!r1 Cr1,M,A

(r1 − r
λn,

∣

∣

∣

∣

Sn(f ;λn)(z) − f(z)− λn

2
zf ′′(z)

∣

∣

∣

∣

≤ Mr(f)(z)λ
2
n ≤ Cr(f)λ

2
n,

‖S(p)
n (f ;λn)− f (p)‖r ∼ λn,

the last equivalence holding if f is not a polynomial of degree ≤ p ∈ N and the constants
in the equivalence depend on f , r, p.

Above, Cr,M,A = M
2r

∑∞
k=2(k + 1)(rA)k < ∞, p ∈ N, 1 ≤ r < r1 < 1

A , Mr(f)(z) =
3MA|z|

r2
∑∞

k=2(k + 1)(rA)k−1 < ∞, Cr(f) = 3MA
r

∑∞
k=2(k + 1)(rA)k−1 and ‖f‖r =

max{|f(z)|; |z| ≤ r}.
(ii) If R < +∞, then the complex approximation operator

S∗
n(f ;λn)(z) =

∞
∑

k=0

ck Sn(ek;λn)(z), z ∈ Dr,

is well-defined and S∗
n(f ;λn)(z) satisfies all the estimates in (i), for all 1 ≤ r < 1

A < R.

Proof. (i) We have

|Sn(f ;λn)(z)| ≤ |e−z/λn |
∞
∑

j=0

(|z|/λn)
j

j!
|f(jλn)| ≤

≤ M |e−z/λn |
∞
∑

j=0

(|z|/λn)
j

j!
eAjλn = M |e−z/λn |

∞
∑

j=0

(eAλn |z|/λn)
j

j!
eAjλn =

= M |e−z/λn | eeAλn|z|/λn
< +∞,

for all z ∈ C, which shows that Sn(f ;λn) is an entire function.
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We can write

Sn(f ;λn)(z) = e−z/λn

∞
∑

j=0

(z/λn)
j

j!

[

∞
∑

k=0

ck (jλn)
k

]

.

If the above two infinite sums would commute, then we would obtain

Sn(f ;λn)(z) =

∞
∑

k=0

ck



e−z/λn

∞
∑

j=0

(z/λn)
j

j!
(jλn)

k



 =

∞
∑

k=0

ckSn(ek;λn)(z).

It is a well-known Fubini type result that a sufficient condition for the commutativity of two
infinite sums, i.e for

∑∞
k=0

∑∞
j=0 ak,j =

∑∞
j=0

∑∞
k=0 ak,j, is that

∑∞
j=0

∑∞
k=0 |ak,j| < +∞.

Applied to our case, the last condition becomes

|e−z/λn |
∞
∑

j=0

(|z|/λn)
j

j!

∞
∑

k=0

|ck| (jλn)
k ≤ M |e−z/λn |

∞
∑

j=0

(|z|/λn)
j

j!

∞
∑

k=0

(Ajλn)
k

k!
=

= M |e−z/λn |
∞
∑

j=0

(|z|/λn)
j

j!
eAjλn = M |e−z/λn | eeAλn |z|/λn < ∞,

for all z ∈ C, which shows

Sn(f ;λn)(z) =
∞
∑

k=0

ckSn(ek;λn)(z), z ∈ C.

Now, the first estimate is immediate from Theorem 3, (i) in [2], the second estimate is
immediate from Theorem 3, (ii) in [2], the third estimate is immediate from Theorem 4 in
[2] and the fourth one is immediate from Theorem 7 in [2], by taking in all these results
bn
an

:= λn.
(ii) S∗

n(f ;λn)(z) is well defined for all z ∈ DR (i.e. for all |z| ≤ r with r < R), n ∈ N,
because

|S∗
n(f ;λn)(z)| ≤

∞
∑

k=0

|ck| |Sn(ek;λn)(z)| ≤ M

∞
∑

k=0

Ak

k!
|Sn(ek;λn)(z)|.

On the other hand, by the inequality (6) in the proof of Theorem 3, (i) in [2] (denoting
there bn

an
= λn), we obtain

|Sn(ek;λn)(z)| ≤ |Sn(ek;λn)(z) − ek(z)|+ |ek(z)| ≤
(k + 1)!

2
rk−1λn + rk,

which, taken into account above, leads to

|S∗
n(f ;λn)(z)| ≤ M

∞
∑

k=0

Ak

k!

(k + 1)!

2
rk−1 λn +M

∞
∑

k=0

Ak

k!
rk =
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=
M

2r
λn

∞
∑

k=0

(k + 1)(Ar)k +MeAr < ∞.

Finally, the estimates in this case follow immediately from the same theorems men-
tioned in the proof of (i). ◭

Define the generalized complex Szász-Kantorovich operator by the formula

Kn(f ;λn)(z) = e−z/λn

∞
∑

j=0

(z/λn)
j

j!

1

λn

∫ (j+1)λn

jλn

f(v)dv =

= e−z/λn

∞
∑

j=0

(z/λn)
j

j!

∫ 1

0
f ((t+ j)λn) dt.

Denote F (z) =
∫ z
0 f(t)dt. Then simple calculations provide the formula (under the hy-

pothesis that the series Sn(F ;λn)(z) is uniformly convergent)

Kn(f ;λn)(z) = S′
n(F ;λn)(z). (2)

We can prove the following results.

Theorem 2. Let λn > 0, n ∈ N be such that λn → 0 as fast as we want. Let f : DR → C,
1 < R ≤ +∞, i.e. f(z) =

∑∞
k=0 ckz

k, for all z ∈ DR. Suppose that there exist M > 0 and

A ∈ (1/R, 1), such that |ck| ≤ M Ak

k! , for all k = 0, 1, ..., (which implies |f(z)| ≤ MeA|z|

for all z ∈ DR). Also, consider 1 ≤ r < 1/A.

(i) If R = +∞, (1/R = 0), i.e. f is an entire function, then, Kn(f ;λn)(z) is an entire
function, for all z ∈ C, n ∈ N we have Kn(f ;λn)(z) =

∑∞
k=0 ckKn(ek;λn)(z) and for all

|z| ≤ r the following estimates hold :

∣

∣

∣

∣

Kn(f ;λn)(z) − f(z)− λn

2
[f ′(z) + zf ′′(z)]

∣

∣

∣

∣

≤ C ′
r(f)λ

2
n,

‖K(p)
n (f ;λn)− f (p)‖r ∼ λn,

the last equivalence holding if f is not a polynomial of degree ≤ p and the constants in the
equivalence depend on f , r, p.

Above p ∈ N
⋃{0}, C ′

r(f) < ∞ is a constant independent of n and z and ‖f‖r =
max{|f(z)|; |z| ≤ r}.

(ii) If R < +∞, then the complex approximation operator

K∗
n(f ;λn)(z) =

∞
∑

k=0

ck Kn(ek;λn)(z), z ∈ Dr,

is well-defined and K∗
n(f ;λn)(z) satisfies all the estimates in (i), for all 1 ≤ r < 1

A < R.
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Proof. (i) From (2) we have
∣

∣

∣

∣

Kn(f ;λn)(z)− f(z)− λn

2
[f ′(z) + zf ′′(z)]

∣

∣

∣

∣

=

=

∣

∣

∣

∣

S′
n(F ;λn)(z) − F ′(z) − λn

2
[F ′′(z) + zF ′′′(z)]

∣

∣

∣

∣

=

=

∣

∣

∣

∣

[

Sn(F ;λn)(z)− F (z) − λn

2
zF ′′(z)

]′∣
∣

∣

∣

.

Let Γ be the circle of radius r1 and center 0, with 1
A > r1 > r. For any |z| ≤ r and v ∈ Γ,

we have |v − z| ≥ r1 − r.
Denoting En(F )(z) = Sn(F ;λn)(z)−F (z)− λn

2 zF ′′(z), from the Cauchy’s formula and
from the above Theorem 1, we get

|E′
n(F )(z)| = 1

2π

∣

∣

∣

∣

∫

Γ

En(F )(z)

(v − z)2
dv

∣

∣

∣

∣

≤ Cr(F )
1

2π

2πr1
(r1 − r)2

λ2
n := C ′

r(f)λ
2
n,

where C ′
r(f) = Cr(F ) r1

(r1−r)2
is a constant independent of n and z.

On the other hand, from (2) and from the equivalence in the above Theorem 1, (i), we
get

‖K(p)
n (f ;λn)− f (p)‖r = ‖S(p+1)

n (F ;λn)− F (p+1)‖r ∼ λn,

if F is not a polynomial of degree ≤ p+ 1, i.e. if f is not a polynomial of degree ≤ p.
(ii) Firstly, we show that K∗

n(f ;λn)(z) is well defined for all z ∈ DR. Indeed, we have

|K∗
n(f ;λn)(z)| ≤

∞
∑

k=0

|ck| |Kn(ek;λn)(z)| ≤ M
∞
∑

k=0

Ak

k!
|Kn(ek;λn)(z)| =

= M

∞
∑

k=0

Ak

k!

1

k + 1
|S′

n(ek+1;λn)(z)|.

By the Cauchy’s formula, taking into account the estimate for Sn(ek+1;λn)(z) in the
section (ii) of the above Theorem 1, it follows

|S′
n(ek+1;λn)(z)| ≤

∣

∣

∣

∣

1

2π

∫

Γ

Sn(ek+1;λn)(v)

(v − z)2
dv

∣

∣

∣

∣

≤ r1
(r1 − r)2

[

(k + 2)!

2
rkλn + rk+1

]

.

Above, Γ is a disk of radius r1 with r < r1 < R and center 0.
Now it follows

|K∗
n(f ;λn)(z)| ≤ M

r1
(r1 − r)2

∞
∑

k=0

Ak

k!

1

k + 1

[

(k + 2)!

2
rkλn + rk+1

]

=

=
Mr1λn

2(r1 − r)2

∞
∑

k=0

(k + 2)(Ar)k +
Mr1r

(r1 − r)2
eAr < ∞.

Finally, the estimates in this case follow immediately from the same theorems men-
tioned in the proof of (i). ◭
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Remark 1. It is worth noting that in the case of real variable, the generalized Szász
operators defined by (1) were considered in [5], where, denoting bn

an
:= λn, the approxima-

tion order ω1(f ;
√
λn) was obtained, with ω1 denoting the modulus of continuity of f on

[0,+∞). The results in the real case in [5] and those in the complex case in Theorems
1 and 2, seem to be of definitive type, in the sense that they exhibit operators which can
approximate the functions with an arbitrary chosen order.

Remark 2. The first estimate in the statement of Theorem 1, (i), was extended (with
a different constant, of course) in [4] to the approximation by generalized Szász-Faber
polynomials in compact sets in C.

3. Generalized Complex Baskakov Operators

For x real and ≥ 0, the original formula of the classical now Baskakov operator is given
by (see [1])

Zn(f)(x) = (1 + x)−n
∞
∑

k=0

(

n+ k − 1

k

)(

x

1 + x

)k

f(k/n).

Many approximation results for these operators have been published.
According to [8], Theorem 2, under the same hypothesis on f , Zn(f)(x) is well defined,

and denoting by [0, 1/n, ..., j/n; f ] the divided difference of f on the knots 0, ..., j/n, for
x ≥ 0 we can write Zn(f)(x) = Wn(f)(x), x ≥ 0, where

Wn(f)(x) :=

∞
∑

j=0

(

1 +
1

n

)

...

(

1 +
j − 1

n

)

[0, 1/n, ..., j/n; f ]xj , x ≥ 0, (3)

(here for j = 0 and j = 1 we take (1 + 1/n) ... (1 + (j − 1)/n) = 1).
For an arbitrary λn → 0, by formula (1) in the paper [6] (particularizing there

ϕn(λn;x) = (1 + x)−1/λn), Zn(f)(x) can be generalized to

Zn(f ;λn)(x) =

= (1 + x)−1/λn

∞
∑

j=0

1

j!

1

λn

(

1 +
1

λn

)

...

(

j − 1 +
1

λn

) (

x

1 + x

)j

f (jλn) , x ≥ 0,

where it is assumed that 1
λn

(

1 + 1
λn

)

...
(

j − 1 + 1
λn

)

= 1 for j = 0.

For this generalization, in [6] the order of approximation ω1(f ;
√
λn

√

x(1 + x)) was
obtained.

Similarly, Wn(f)(x) given by (3), can be generalized to

Wn(f ;λn)(x) =
∞
∑

j=0

(1 + λn) ... (1 + (j − 1)λn) [0, λn, ..., jλn; f ]x
j , x ≥ 0,

where it is assumed that (1 + λn) ... (1 + (j − 1)λn) = 1 for j = 0.
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It is clear that Zn(f ;λn)(x) = Wn(f ;λn)(x) for all x ≥ 0, but, as noted in [3], p. 124,
in the special case λn = 1

n , if |x| < 1 is not positive, then Wn(f ;λn)(x) and Zn(f ;λn)(x)
do not necessarily coincide and because of this reason they were studied separately in
Section 1.8 of [3], pp. 124-138, under different hypotheses on f and z ∈ C.

The first goal of this section is to study the approximation properties of the com-
plex generalized Baskakov operators Wn(f ;λn)(z) attached to analytic functions satisfying
some exponential-type growth condition.

For this aim, we prove the following

Theorem 3. Let 0 < λn ≤ 1
2 , n ∈ N be such that λn → 0 as fast as we want. Let

f : DR → C, 1 < R ≤ +∞, i.e. f(z) =
∑∞

k=0 ckz
k, for all z ∈ DR. Suppose that there

exist M > 0 and A ∈ (1/R, 1) such that |ck| ≤ M Ak

k! , for all k = 0, 1, ..., (which implies

|f(z)| ≤ MeA|z| for all z ∈ DR). Consider 1 ≤ r < 1
A .

(i) If R = +∞, (1/R = 0), i.e. f is an entire function, then for |z| ≤ r, Wn(f ;λn)(z)
is analytic, we have Wn(f ;λn)(z) =

∑∞
k=0 ckWn(ek;λn)(z) and the following estimates

hold
|Wn(f ;λn)(z)− f(z)| ≤ Cr,M,A λn,

|W (p)
n (f ;λn)(z) − f (p)(z)| ≤ p!r1 Cr1,M,A

(r1 − r
λn,

∣

∣

∣

∣

Wn(f ;λn)(z)− f(z)− λn

2
zf ′′(z)

∣

∣

∣

∣

≤ Mr(f)λ
2
n,

‖W (p)
n (f ;λn)− f (p)‖r ∼ λn,

the last equivalence holding if f is not a polynomial of degree ≤ p ∈ N and the constants
in the equivalence depend on f , r, p.

Above, Cr,M,A = 6M
∑∞

k=2(k + 1)(k − 1)(rA)k < ∞, p ∈ N, 1 ≤ r < r1 < 1
A ,

Mr(f) = 16M
∑∞

k=3(k − 1)(k − 2)(rA)k < ∞ and ‖f‖r = max{|f(z)|; |z| ≤ r}.
(ii) If R < +∞, then the complex approximation operator

W ∗
n(f ;λn)(z) =

∞
∑

k=0

ck Wn(ek;λn)(z), z ∈ Dr,

is well-defined and W ∗
n(f ;λn)(z) satisfies all the estimates in (i), for all 1 ≤ r < 1

A < R.

Proof. (i) Let f(z) =
∑∞

k=0 ckz
k, z ∈ C. We (formally) can write

Wn(f ;λn)(z) =
∞
∑

j=0

(1 + λn) ... (1 + (j − 1)λn) [0, λn, ..., jλn;
∞
∑

k=0

ckek] z
j .

Since, in general, for a divided difference we have the formula [x0, ..., xj−1 : F ] =
∑j−1

p=0
F (xp)
up(xp)

,

where up(x) = (x−x0) ... (x−xp−1)(x−xp+1) ... (x−xj−1) and since a finite sum commutes
with an infinite sum, we obtain

Wn(f ;λn)(z) =
∞
∑

j=0

(1 + λn) ... (1 + (j − 1)λn)
∞
∑

k=0

ck [0, λn, ..., jλn; ek] z
j .
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Now, if the above two infinite sums would commute, then we would obtain

Wn(f ;λn)(z) =

=

∞
∑

k=0

ck

∞
∑

j=0

(1 + λn) ... (1 + (j − 1)λn) [0, λn, ..., jλn; ek] z
j =

∞
∑

k=0

ckWn(ek;λn)(z).

It is a well-known Fubini type result that a sufficient condition for the commutativity of two
infinite sums, i.e for

∑∞
k=0

∑∞
j=0 ak,j =

∑∞
j=0

∑∞
k=0 ak,j, is that

∑∞
k=0

∑∞
j=0 |ak,j| < +∞.

For |z| ≤ r, denote ak,j := ck(1 + λn) ... (1 + (j − 1)λn)[0, λn, ..., jλn; ek]z
j . Then the

last condition becomes

∞
∑

k=0

∞
∑

j=0

|ck|(1 + λn) ... (1 + (j − 1)λn)[0, λn, ..., (j − 1)λn; ek]|z|j =

=
∞
∑

k=0

k
∑

j=0

|ck|(1 + λn) ... (1 + (j − 1)λn)[0, λn, ..., (j − 1)λn; ek]|z|j ≤

≤ M

∞
∑

k=0

(Ar)k

k!

k
∑

j=0

(1 + λn) ... (1 + (j − 1)λn)[0, λn, ..., (j − 1)λn; ek] ≤

≤ M
∞
∑

k=0

(Ar)k

k!
(k + 1)! = M

∞
∑

k=0

(k + 1)(Ar)k < ∞.

Above we used the inequality in Lemma 3.2 in [7]:

k
∑

j=0

(1 + λn) ... (1 + (j − 1)λn)[0, λn, ..., (j − 1)λn; ek] ≤ (k + 1)!, z ∈ C.

Therefore, we obtain

Wn(f ;λn)(z) =

∞
∑

k=0

ckWn(ek;λn)(z), z ∈ C, |z| ≤ r.

This relationship also proves that Wn(f ;λn)(z) is analytic in |z| < r, because, as above,
we have

|Wn(f ;λn)(z)| ≤ M

∞
∑

k=0

(A|z|)k
k!

(k + 1)! = M

∞
∑

k=0

(k + 1)(A|z|)k < ∞, |z| < r.

Now, let us denote

Tn,k(z) = Wn(ek;λn)(z) =
k

∑

j=0

(1 + λn) ... (1 + (j − 1)λn)[0, λn, ..., jλn; ek]z
j .



Approximation with an Arbitrary Order by Szász, Szász-Kantorovich 11

Using the same reasoning as in the proof of Theorem 1.9.1, page 126 in [3], we obtain the
recurrence formula

Tn,p+1(z) = z(1 + z)λnT
′
n,p(z) + zTn,p(z),

and, following the reasoning of the proof of Theorem 1.9.1 (which actually means the
replacing of 1

n by λn in all the formulas there), we easily arrive at the estimate

‖Tn,p − ep‖r ≤ 6rp(p + 1)!(p − 1)λn, p = 2, 3, ...,

which finally leads to the estimate

|Wn(f ;λn)(z) − f(z)| ≤
[

6M

∞
∑

k=2

(k + 1)(k − 1((rA)k

]

λn,

for all |z| ≤ r, n ∈ N.
Denote by γ the circle of radius r1 > r and center 0. Using the same reasoning as in

[3], section (ii), page 128, we easily arrive at the second estimate in the theorem.
Similarly, replacing 1

n by λn in all the formulas in the statement and proof of Theorem
1.9.3 in [3], pages 130-131, we get the third estimate in the present theorem.

Finally, the forth estimate follows from Corollary 1.9.4, in [3], p. 132, by replacing 1
n

in all the formulas in its proof by λn.
(ii) From the last estimate in the proof of the above section (i), it directly follows that

W ∗
n(f ;λn)(z) is well defined for all |z| ≤ r.
Finally, the estimates in this case follow immediately from the same theorems men-

tioned in the proof of (i). ◭

Remark 3. Due to the results in the real case in [6] and to those in the complex case
in Theorem 3, we can say that they seem to be of definitive type, in the sense that they
exhibit Baskakov type operators which can approximate the functions with an arbitrary
chosen order.

Remark 4. The first estimate in the statement of Theorem 3, (i), was extended (with a
different constant, of course) in [7] to the approximation by generalized Baskakov-Faber
polynomials in compact sets in C.
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