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Riesz’s Equality for the Hilbert Transform of the Finite
Complex Measures
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Abstract. In the present paper using the notion of @’-integration introduced by E.Titchmarsh
we prove the analogue of Riesz’s equality for the Hilbert transform of the finite complex measures.
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1. Introduction

dv(T)

v( .
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Let v be a complex Borel measure on the real axis R and the integral [ R
The function

(Hv) (t):l/ dv(r) | ¢ g,

T g t—1"
is called the Hilbert transform of the measure v. In particular, if a measure v is absolutely
continuous: dv (t) = f (t)dt, then (Hv) (t) is called the Hilbert transform of the function
f and is denoted by (H f) (t). It is known (see [9, 15]) that (Hv) (t) exists for almost all
t € R, and for any A > 0 the inequality

m{te R: |(Hv) (t)|>)\}§co||§\‘|, (1)
holds, where m stands for the Lebesgue measure, ||v|| is the total variation of the measure
v, and ¢p is an absolute constant. M.Riesz (see, for example, [9, 11, 14]) proved that
if a measure v is absolutely continuous: dv(t) = f(t)dt and f € L, (R), p > 1, then

Hf € L,(R) and for any g € Ly (R) the following equation holds:

/ o (1) (Hf) (1) dt = — / (Hg) (1) f (t) dt.
R R

where ¢ = p%l. If f e Li(R) and f ¢ L,(R) for any p > 1, then the function H f

doesn’t even belong to the class of functions Lgloc) (R). In this case, using the notion of
A-integration, Anter Ali Alsayad (see [8]) proved the following theorem.
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Theorem A [8]. Ifg € L,(R), p > 1 is a bounded function, its Hilbert’s transform is
also a bounded function, and f € L1 (R), then the function g (t) (Hf)(t) is A-integrable
on R and the following equation holds:

(A)/Rg(t) (Hf)(t)dt = —/R(Hg) (t) f () dt. (2)

In the case where the measure v is not absolutely continuous, the function (Hv) (t) does
not satisfy the condition Am{t € R: |(Hv) (t)| > A\} = o(1) as A — 400, and therefore
the formula (2) fails to hold. In [5], using the notion of Q’-integration introduced by
E.Titchmarsh [20], the author proved that the Hilbert transform of the finite complex
measure v is Q'-integrable on the real axis R, and the @’-integral of the function Hv is
equal to zero.

In the present paper we prove that, if v is a finite complex Borel measure on the real
axis R, the function g € L, (R), p > 1 is H6lder continuous and g (¢) In (e + |¢|) is bounded
on R, then the function g (¢t) (Hf) (t) is Q'-integrable on R and the following equation
holds:

@) [ g n@a=- [ 9o

2. On the properties of - and ()'-integrals of the function measurable
on the real axis

For a measurable complex function f on an interval [a,b] C R we set
[f (@)], = [f @)]" = [ () for |f (z)] <m,

[f @), = n-sgnf (), [f (2)]" =0 for [f (z)| >n, n €N,
where sgnz = ‘z—l for z # 0 and sgn0 = 0.

In 1929, E.Titchmarsh [20] introduced the notions of Q- and @'-integrals.
Definition 1. If a finite limit nhﬁn;() f; [f (z)],, dx (nlgrolo f: [f (x)]" dz, respectively) exists,
then f is said to be Q-integrable (Q)'-integrable, respectively) on [a,b], that is f € Q [a, b
(f € Q' [a,b]), and the value of this limit is referred to as the Q-integral (Q'-integral) of
this function and is denoted by

(@Q) /abf(iv)dfv <(Q’) /abf(as)d:n).

In the same paper, E.Titchmarsh established that, when studying the properties
of trigonometric series conjugate to Fourier series of Lebesgue integrable functions, Q-
integration leads to a series of natural results. A very uncomfortable fact impeding the
application of Q-integrals and )’-integrals when studying diverse problems of function the-
ory is the absence of the additivity property, that is, the Q-integrability (Q'-integrability)
of two functions does not imply the Q-integrability (Q’-integrability) of their sum. If one
adds the condition
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Am{z€fa,b]: |f(z)]>A}=0(1),\ = 400, (3)

where m stands for the Lebesgue measure, to the definition of Q-integrability (Q’-
integrability) of a function f on the interval [a,b], then the Q-integral and @’-integral
coincide (Q [a,b] = Q' [a, b]), and these integrals become additive.

Definition 2. If f € Q'[a,b] (or f € QJa,b]) and condition (3) holds, then f is said
to be A-integrable on [a,b], f € Ala,b], and the limit nh_{glo fab [f (x)]"dx (or the limit

le f: [f (x)],, dz) is denoted in this case by (A) fab f(z)dz.

As we noted above, the Q-integral and the @Q'-integral do not have the additivity
property. E.Titchmarsh in [20] for real functions and the author in [2] for complex functions
established that, if f € Q[a,b] and g € L [a,b] (that is, g is Lebesgue integrable on the
interval [a, b]), then f+g € @ [a,b] and the Q-integral of this sum is equal to the sum of the
Q-integral of f and the Lebesgue integral of g. In [2], the author found a class of functions
M ([a, b] , C) such that, on this class, the Q'-integral coincides with the Q-integral, and
proved that the )’-integrability (Q-integrability) of a function f € M ([a, b] , C') and
the A-integrability of a function g imply the @Q'-integrability (Q-integrability) of their
sum f + g, and the @Q'-integral (Q-integral) of this sum is equal to the sum of the Q’-
integral (Q-integral) of f and the A-integral of g. He also found a class of functions
SM ([0, 2x] , C) € M ([0, 27| , C) such that the @’-integral and the Q-integral have the
additivity property on this class. The properties of Q- and Q'-integrals were investigated in
[2, 10, 20], and for the applications of A-, Q- and @Q'-integrals in the theory of functions of
real and complex variables we refer the reader to [1, 2, 3,4, 5,6, 7, 8,17, 18, 19, 21, 22, 23|.

For a complex function f measurable on the real axis R we assume
[f (@50 = [f @) = f (@) for 6 < | (@) <A, [f @)]50 = [f ()] = 0 for [ (z)] <6,
[f ()50 = Asgnf (), [f ()] =0 for |f (2)] > A, 0 <5 < A
Definition 3. If a finite limit 51_1)1& Jrlf ()]s da (61—i>%1+ Jrf (2)]>* da respectively)

A—4o00 A—4o00
exists, then f is said to be Q-integrable (Q'-integrable) on R, thatis f € Q (R) (f € Q' (R)),
and the value of this limit is referred to as the Q-integral (Q'-integral) of this function and

s denoted by
@ [ 1)ds ((@') [ d:z:).

Remark 1. Let h > 0 be any positive number. From the equalities

tiw [ 17 @) do = Jim f (@) do
)f;:ggo R [ ]6’>\ 0=0+ J{zeR: 6<|f(x)|<h}
4+ lim [f (@)], dz, )
A=+00 JizeR: |f(z)|>h} g
lim fla OX dr — lim f(x)dx+
50+ R[ (@) 020+ J{zeR: 6<| () <h} o

A—400
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+ lim [f ()] da, (5)
A= teo J{zeR: |f(x)[>h}
it follows that if for some h > 0 there exists the integral f{xeR: \f(2)|<h} f(z)dz, then Q-

and Q' -integrals of the function f can be determined as follows

= lim €T T / x)dr = lim a:’\a:
@ [ fada= tm_ [ 17 @)hde (@) [ f@do= tim_ [ 1 @)

A=+ J R A——+o00

where [f (x)], and [f (2)]* are determined as in Definition 1, and if there exists the integral
f{zeR: \f(2)[>h} f(z)dx, then Q- and Q'-integrals of the function f can be determined as
follows
Q) / f (@) de = (@) / f(@)de = lim f (z) da.
R R 070+ J{weR: £ (2)] 25}

Note that, as in case of an interval, Q- and Q'-integrals of the functions measurable
on the real axis do not satisfy the additivity property, that is the Q-integrability (Q’-
integrability) of two functions does not imply the Q-integrability (Q'-integrability) of their
sum. If one adds the conditions

dm{xeR: |f(x)]>d}=0(1),0 = 0+, (6)

Am{xeR: |f(x)]>A}=0(1),\ = +o0, (7)

to the definition of Q-integrability (Q’-integrability) of a function f on R, then Q-integral
and @Q'-integral coincide (Q (R) = @’ (R)) and these integrals become additive (see [1]).

Definition 4. If f € Q' (R) (or f € Q(R)) and the conditions (6) and (7) hold, then f
is said to be A-integrable on R, f € A (R) and the limit 513& IR lf (;16)]5’A dx (or the limit

A—4-00
61—i>%1+ Jrf ()]s, dx) is denoted in this case by (A) [ f (z)dx.
A—+400

For the real function f measurable on R we assume

(f>N={teR: fO)>A},(f<AN={teR: f(t)<A},
(fzA)={teR: f()=A},(f<A)={teR: [(t) <A},
< f<AN={teR:0<f()<A}.

Definition 5. We denote by M (R; C) the class of measurable complex-valued functions
f on R for which the finite limits )\lirf Am(|f| > A) and Slir&ém (If] > 9) ewist.
—+o0 —

It is known that the distribution function m{t € R: |(Hv) (t)| > A} of Hilbert trans-
form of the complex measure v satisfies the following equality (see [12, 16]):

lim Am{teR: |(Hv) (t)\>/\}:%||1/SH, (8)

A—400
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where v, stands for the singular part of the measure v. In the paper [5] it is proved that
the equality

lim om{teR: |(Hv) (t)]>5}:%|V(R)|, ()

50+

holds.

The equalities (8) and (9) show that the Hilbert transform of the finite complex measure
belongs to the class M (R; C).
Theorem 1. The Q-integral and the Q'-integral coincide in the function class M (R; ),
that is, if f € M (R; C), then for the existence of the integral (Q fR x) dx it is necessary
and sufficient that the integral (Q') [, f r [ (x) dx exist, and in that case the followmg equation

holds:
Q) /R f (@) dz = (@) /R f () de. (10)

Proof of Theorem 1. Let h > 0 be any positive number. If f € Q' (R), then from (5) it
. A
follows that there exist finite limits hm f(5<|f\<h) f(x)dr and )\Er—ir-loo f(\f|>h) [f ()] du.

Similar to the proof of Theorem 1 in [2], one can prove that the existence of the limit
hm flf\>h) A dz implies the existence of the limit hm f(‘f|>h) [f ()], dz and

thelr equality. Hence, from (4) it follows that the function f is Q 1ntegrable and equation
(10) holds.

It remains to prove that, in the function class M (R; C), it follows from f € Q (R)
that f € Q' (R). From (4) we obtain that if f € Q(R) and f € M (R; C), then there
exist finite limits 61_i)1(r]1+ f(&gmgh) f(z) dx, hm f(|f|>h) [f (z)], dz and )\EIJIrlOO)\m (If] > N).
Similar to the proof of Theorem 2 in [2], one can prove that the existence of the limit

hm f(|f\>h) (x)], dz implies the existence of the limit )\ET@O f(\f|>h) [f ()] da. Hence,

from ( ) it follows that the function f is Q'-integrable and the equation (10) holds. This
completes the proof of Theorem 1. <«

We need the following theorems proved by the author in [4] and [5].
Theorem B [4, Theorem 2.3]. If a function f € M (R; C) is Q'-integrable on R and a
function g is A-integrable on R, then their sum f+ g € M (R; C) is QQ'-integrable on R,
and the following equation holds:

(Q')/R[f()Jrg /f )dz + ( )/ (z) dz.

Theorem C [5, Theorem 4]. Let v be a finite complex measure on the real azis R.
Then the equation

(Q) /R(HZ/) (t)dt = 0,

holds.
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3. Riesz’s equality for the Hilbert transform of the finite complex
measures

Theorem 2. Let v be a finite complex measure on the real axis R, the function g € Ly (R),
p > 1 be Hélder continuous and g (t)In (e + |t|) be bounded on R. Then the function
g (t) (Hv) (t) is Q'-integrable on R and the following equation holds:

@) [ 9 ) ©de=- [ o v (o). 1)
Remark 2. Note that from the conditions of the theorem it follows that the function

(Hg) (t) is bounded on R and therefore the integral on the right-hand side of (11) ewists.
Proof of Theorem 2. Let us consider the measure du (t) = ¢ (¢) dv (t). Then

o) =+ [ 22D L[908 5y 4 1) (110 1) =

s t—T1 T t—T1
=J(t)+g(t)(Hv)(t), (12)
where
1 9@ -e®, 1 g -9, .1 g(r)dv(r)
J(t)_W/R t—r ) 7T/(Itrlgl) t—r7 ! ()+77/(|t7|>1) t=7
S I G AU R AT (13)

At first consider the case of p(R) = 0. In this case, for every ¢ # 0 we have the equality

_1 g(r)dv(r) 1 [g(r)dv(r) _
T2 (t) = /(tT|>1) / N

T t—T T r t+sgnt
1 T + sgnt 1 T)dv (T
_ / 9 g (T)dv (1) — / M (14)
s (\t—7'|>1) (t — 7’) (t + sgnt) T (|t_7‘§1) t+ sgnt

Then, by the conditions of the theorem, it follows that the integrals

Lz (1
R A

exist. Therefore it follows from Fubini’s theorem (see, for example, [13], Ch.5, §6) and
from (14) that the functions J; (t), Ja2 (¢) and Js (f) are Lebesgue integrable. Hence we
obtain that the function J (¢) in (13) is also Lebesgue integrable on R. It follows from the

T + sgnt
(t—7)(t+ sgnt

)’dt> g (1)dv (1),

dt) dv (1),

t + sgnt
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equality (12) and Theorems B and C that the function ¢ (¢) (Hv) (t) is '-integrable on R
and

@»@Mﬂ@ﬂ@ﬂ:@»Lm@@ﬁ—AJ@ﬁ:—AJ@ﬁ:

:_Lhwﬁ—éb@ﬁ+ékww

Then from the equations

1 g(t)—g(t) _

[nwa=1] ( /(lt_ﬂq) AGETIUMY <7>) i
_1 GETIGIR P
_FL<AF“D )= ﬁ)d(%

1 T+ sgnt N () — M B
/RJ2 = i /R </(tT|>1) (t—7)(t+ sgnt)g( ) dv (7) /(|t7—§1) t + sqnt ) dt =
_ l T+ sgnt B dt e
- T /R </(|t_7>1) (t - T) (t + sgnt) dt /(|t—7'|§1) t+ sgnt> g( )d ( ) )

foa=t[ ([ Oae)a-t[ ([  a)ae

we have
(@) /R g (0) (Hw) (1) dt = —— /R ( /( o W&) dv () -

1/ / T + sgnt / dt
T dt — g (1)dv (1) +
T R( (jt—r|>1) (= 7) (t + sgnt) (jt—7|<1) L+ sgnt (7) dv (7)

1 g(t) = _ v
r /R </(|t—7>1) t— Tdt dv (1) = /R(Hg) (v (1)

That is, the equation (11) holds in case p (R) = 0.

Now let’s consider the case u(R) = dy # 0. Denote by vy the absolutely continuous
measure satisfying the condition [, g (t) dvy (t) = do, and by v the difference vy = v —vy.
Let dp; (t) = g (t) dv; (t), i = 1, 2. Then ps (R) = 0 and, according to the above case, we
have the equation

(@) [ 9@ ) ()it == [ (o) Oy (1), (15)

As the measure v is absolutely continuous, then by Theorem A the equation
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(A) /R g (t) (Hn) (1) dt = — /R (Hg) (t) v (1), (16)

holds. From the equations (15), (16) and by Theorem C it follows that

(@) /R g (t) (Hv) (t) dt = (A) /R g (t) (Huw) (t)dt + (Q') /R g (t) (Hup) (t)dt =

- /R (Hg) (t) dun (t) — /R (Hg) (t) dus (1) = — / (Hg) (t) dv (1).

R
This completes the proof of Theorem 2. «
Theorem 3. Let v be a finite complex measure on the real axis R, and the function
g € L,(R), p>1 be Hélder continuous on R. Then the integral f(|g-H1/|<1) g (t) (Hv) (t)dt
exists.
Proof of Theorem 3. Denote

g (6) (Hv) () dt. 1o = | g (t) (Hv) (¢) dt.

L= /
(lg-Hv|<1) N(|Hv|>1) (Ig-Hv|<1) N(|Hv|<1)

Then it follows from the inequality (1) that
[ <m (|[Hv| > 1) <cp- ||| < oo.

If g € L1 (R), then

| < / 19 ()] dt < lgll, < oo,
(lg-Hv|<1)N(JHY|L1)

and if g € L, (R), p > 1, then it follows from the Hélder’s inequality and the inequality
(1) that

1
7

| 2] S/ lg )] - [(Hv) ()| dt < (/ (Hy) () dt>p lgll,
(Ig-Hv|<1) N(|HYI<1) (1HvI<1)

. N7
_ <Z / (Hv) (6)F dt)
i—o? (27F 1<|Hv|<27F)
1
o0 , p/
< (2CO||VH > 27k ”) lgll, < oo
k=0

It follows from these estimates that the integral f(|g,HV‘<1) g (t) (Hv) (t) dt exists. This
completes the proof of Theorem 3. «
Remark 3. It follows from Theorem 3 and Remark 1 that the equation (11) in Theorem
2 can be rewritten in the following way:

=

P

[ee]
lll, < <Z 2 m (|Hv| > r“)) lall,
k=0
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Remark 4. In the class M (R; C), the Q'-integral coincides with the Q-integral (see
Theorem 1). Then, under conditions of Theorem 2, the function g (t) (Hv) (t) is Q-
integrable on R and the following equation holds:

@ /R g (t) (Hv) (t) dt = — /R (Hg) (t) dv (1).
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