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Key Words and Phrases: Riesz’s equality, Hilbert transform, finite complex measure, Q-
integral, Q′-integral, analytic functions, nontangential boundary values.
2010 Mathematics Subject Classifications: 44A15, 26A39, 30E25

1. Introduction

Let ν be a complex Borel measure on the real axis R and the integral
∫
R
dν(τ)
1+|τ | exist.

The function

(Hν) (t) =
1

π

∫
R

dν (τ)

t− τ
, t ∈ R,

is called the Hilbert transform of the measure ν. In particular, if a measure ν is absolutely
continuous: dν (t) = f (t) dt, then (Hν) (t) is called the Hilbert transform of the function
f and is denoted by (Hf) (t). It is known (see [9, 15]) that (Hν) (t) exists for almost all
t ∈ R, and for any λ > 0 the inequality

m {t ∈ R : |(Hν) (t)| > λ} ≤ c0
‖ν‖
λ
, (1)

holds, where m stands for the Lebesgue measure, ‖ν‖ is the total variation of the measure
ν, and c0 is an absolute constant. M.Riesz (see, for example, [9, 11, 14]) proved that
if a measure ν is absolutely continuous: dν (t) = f (t) dt and f ∈ Lp (R), p > 1, then
Hf ∈ Lp (R) and for any g ∈ Lq (R) the following equation holds:∫

R
g (t) (Hf) (t) dt = −

∫
R

(Hg) (t) f (t) dt,

where q = p
p−1 . If f ∈ L1 (R) and f /∈ Lp (R) for any p > 1, then the function Hf

doesn’t even belong to the class of functions L
(loc)
1 (R). In this case, using the notion of

A-integration, Anter Ali Alsayad (see [8]) proved the following theorem.
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Theorem A [8]. If g ∈ Lp (R), p ≥ 1 is a bounded function, its Hilbert’s transform is
also a bounded function, and f ∈ L1 (R), then the function g (t) (Hf) (t) is A-integrable
on R and the following equation holds:

(A)

∫
R
g (t) (Hf) (t) dt = −

∫
R

(Hg) (t) f (t) dt. (2)

In the case where the measure ν is not absolutely continuous, the function (Hν) (t) does
not satisfy the condition λm {t ∈ R : |(Hν) (t)| > λ} = o (1) as λ → +∞, and therefore
the formula (2) fails to hold. In [5], using the notion of Q′-integration introduced by
E.Titchmarsh [20], the author proved that the Hilbert transform of the finite complex
measure ν is Q′-integrable on the real axis R, and the Q′-integral of the function Hν is
equal to zero.

In the present paper we prove that, if ν is a finite complex Borel measure on the real
axis R, the function g ∈ Lp (R), p ≥ 1 is Hőlder continuous and g (t) ln (e+ |t|) is bounded
on R, then the function g (t) (Hf) (t) is Q′-integrable on R and the following equation
holds:

(
Q′
) ∫

R
g (t) (Hf) (t) dt = −

∫
R

(Hg) (t) f (t) dt.

2. On the properties of Q- and Q′-integrals of the function measurable
on the real axis

For a measurable complex function f on an interval [a, b] ⊂ R we set

[f (x)]n = [f (x)]n = f (x) for |f (x)| ≤ n,

[f (x)]n = n · sgnf (x), [f (x)]n = 0 for |f (x)| > n, n ∈ N ,

where sgnz = z
|z| for z 6= 0 and sgn0 = 0.

In 1929, E.Titchmarsh [20] introduced the notions of Q- and Q′-integrals.

Definition 1. If a finite limit lim
n→∞

∫ b
a [f (x)]n dx ( lim

n→∞

∫ b
a [f (x)]n dx, respectively) exists,

then f is said to be Q-integrable (Q′-integrable, respectively) on [a, b], that is f ∈ Q [a, b]
(f ∈ Q′ [a, b]), and the value of this limit is referred to as the Q-integral (Q′-integral) of
this function and is denoted by

(Q)

∫ b

a
f (x) dx

((
Q′
) ∫ b

a
f (x) dx

)
.

In the same paper, E.Titchmarsh established that, when studying the properties
of trigonometric series conjugate to Fourier series of Lebesgue integrable functions, Q-
integration leads to a series of natural results. A very uncomfortable fact impeding the
application of Q-integrals and Q′-integrals when studying diverse problems of function the-
ory is the absence of the additivity property, that is, the Q-integrability (Q′-integrability)
of two functions does not imply the Q-integrability (Q′-integrability) of their sum. If one
adds the condition
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λm {x ∈ [a, b] : |f (x)| > λ } = o (1) , λ→ +∞, (3)

where m stands for the Lebesgue measure, to the definition of Q-integrability (Q′-
integrability) of a function f on the interval [a, b], then the Q-integral and Q′-integral
coincide (Q [a, b] = Q′ [a, b]), and these integrals become additive.
Definition 2. If f ∈ Q′ [a, b] (or f ∈ Q [a, b]) and condition (3) holds, then f is said

to be A-integrable on [a, b], f ∈ A [a, b], and the limit lim
n→∞

∫ b
a [f (x)]n dx (or the limit

lim
n→∞

∫ b
a [f (x)]n dx) is denoted in this case by (A)

∫ b
a f (x) dx.

As we noted above, the Q-integral and the Q′-integral do not have the additivity
property. E.Titchmarsh in [20] for real functions and the author in [2] for complex functions
established that, if f ∈ Q [a, b] and g ∈ L [a, b] (that is, g is Lebesgue integrable on the
interval [a, b]), then f+g ∈ Q [a, b] and the Q-integral of this sum is equal to the sum of the
Q-integral of f and the Lebesgue integral of g. In [2], the author found a class of functions
M ([a, b] , C) such that, on this class, the Q′-integral coincides with the Q-integral, and
proved that the Q′-integrability (Q-integrability) of a function f ∈ M ([a, b] , C) and
the A-integrability of a function g imply the Q′-integrability (Q-integrability) of their
sum f + g, and the Q′-integral (Q-integral) of this sum is equal to the sum of the Q′-
integral (Q-integral) of f and the A-integral of g. He also found a class of functions
SM ([0, 2π] , C) ⊂ M ([0, 2π] , C) such that the Q′-integral and the Q-integral have the
additivity property on this class. The properties of Q- and Q′-integrals were investigated in
[2, 10, 20], and for the applications of A-, Q- and Q′-integrals in the theory of functions of
real and complex variables we refer the reader to [1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19, 21, 22, 23].

For a complex function f measurable on the real axis R we assume
[f (x)]δ,λ = [f (x)]δ,λ = f (x) for δ ≤ |f (x)| ≤ λ, [f (x)]δ,λ = [f (x)]δ,λ = 0 for |f (x)| < δ,

[f (x)]δ,λ = λ sgnf (x), [f (x)]δ,λ = 0 for |f (x)| > λ, 0 < δ < λ.

Definition 3. If a finite limit lim
δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx ( lim

δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx respectively)

exists, then f is said to be Q-integrable (Q′-integrable) on R, that is f ∈ Q (R) (f ∈ Q′ (R)),
and the value of this limit is referred to as the Q-integral (Q′-integral) of this function and
is denoted by

(Q)

∫
R
f (x) dx

((
Q′
) ∫

R
f (x) dx

)
.

Remark 1. Let h > 0 be any positive number. From the equalities

lim
δ→0+
λ→+∞

∫
R

[f (x)]δ,λ dx = lim
δ→0+

∫
{x∈R: δ≤|f(x)|≤h}

f (x) dx+

+ lim
λ→+∞

∫
{x∈R: |f(x)|>h}

[f (x)]λ dx, (4)

lim
δ→0+
λ→+∞

∫
R

[f (x)]δ,λ dx = lim
δ→0+

∫
{x∈R: δ≤|f(x)|≤h}

f (x) dx+
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+ lim
λ→+∞

∫
{x∈R: |f(x)|>h}

[f (x)]λ dx, (5)

it follows that if for some h > 0 there exists the integral
∫
{x∈R: |f(x)|≤h} f (x) dx, then Q-

and Q′-integrals of the function f can be determined as follows

(Q)

∫
R
f (x) dx = lim

λ→+∞

∫
R

[f (x)]λ dx,
(
Q′
) ∫

R
f (x) dx = lim

λ→+∞

∫
R

[f (x)]λ dx,

where [f (x)]λ and [f (x)]λ are determined as in Definition 1, and if there exists the integral∫
{x∈R: |f(x)|>h} f (x) dx, then Q- and Q′-integrals of the function f can be determined as

follows

(Q)

∫
R
f (x) dx =

(
Q′
) ∫

R
f (x) dx = lim

δ→0+

∫
{x∈R: |f(x)|≥δ}

f (x) dx.

Note that, as in case of an interval, Q- and Q′-integrals of the functions measurable
on the real axis do not satisfy the additivity property, that is the Q-integrability (Q′-
integrability) of two functions does not imply the Q-integrability (Q′-integrability) of their
sum. If one adds the conditions

δ m {x ∈ R : |f (x)| > δ } = o (1) , δ → 0+, (6)

λm {x ∈ R : |f (x)| > λ } = o (1) , λ→ +∞, (7)

to the definition of Q-integrability (Q′-integrability) of a function f on R, then Q-integral
and Q′-integral coincide (Q (R) = Q′ (R)) and these integrals become additive (see [1]).

Definition 4. If f ∈ Q′ (R) (or f ∈ Q (R)) and the conditions (6) and (7) hold, then f
is said to be A-integrable on R, f ∈ A (R) and the limit lim

δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx (or the limit

lim
δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx) is denoted in this case by (A)

∫
R f (x) dx.

For the real function f measurable on R we assume

(f > λ) = { t ∈ R : f (t) > λ } , (f < λ) = { t ∈ R : f (t) < λ } ,

(f ≥ λ) = { t ∈ R : f (t) ≥ λ } , (f ≤ λ) = { t ∈ R : f (t) ≤ λ } ,

(δ ≤ f ≤ λ) = { t ∈ R : δ ≤ f (t) ≤ λ } .

Definition 5. We denote by M (R; C) the class of measurable complex-valued functions
f on R for which the finite limits lim

λ→+∞
λm (|f | > λ) and lim

δ→0+
δ m (|f | > δ) exist.

It is known that the distribution function m {t ∈ R : |(Hν) (t)| > λ} of Hilbert trans-
form of the complex measure ν satisfies the following equality (see [12, 16]):

lim
λ→+∞

λm {t ∈ R : |(Hν) (t)| > λ} =
2

π
‖νs‖ , (8)
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where νs stands for the singular part of the measure ν. In the paper [5] it is proved that
the equality

lim
δ→0+

δm {t ∈ R : |(Hν) (t)| > δ} =
2

π
|ν (R)| , (9)

holds.

The equalities (8) and (9) show that the Hilbert transform of the finite complex measure
belongs to the class M (R; C).

Theorem 1. The Q-integral and the Q′-integral coincide in the function class M (R; C),
that is, if f ∈M (R; C), then for the existence of the integral (Q)

∫
R f (x) dx it is necessary

and sufficient that the integral (Q′)
∫
R f (x) dx exist, and in that case the following equation

holds:

(Q)

∫
R
f (x) dx =

(
Q′
) ∫

R
f (x) dx. (10)

Proof of Theorem 1. Let h > 0 be any positive number. If f ∈ Q′ (R) , then from (5) it
follows that there exist finite limits lim

δ→0+

∫
(δ≤|f |≤h) f (x) dx and lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx.

Similar to the proof of Theorem 1 in [2], one can prove that the existence of the limit
lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx implies the existence of the limit lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx and

their equality. Hence, from (4) it follows that the function f is Q-integrable and equation
(10) holds.

It remains to prove that, in the function class M (R; C) , it follows from f ∈ Q (R)
that f ∈ Q′ (R). From (4) we obtain that if f ∈ Q (R) and f ∈ M (R; C), then there
exist finite limits lim

δ→0+

∫
(δ≤|f |≤h) f (x) dx, lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx and lim

λ→+∞
λm (|f | > λ).

Similar to the proof of Theorem 2 in [2], one can prove that the existence of the limit
lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx implies the existence of the limit lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx. Hence,

from (5) it follows that the function f is Q′-integrable and the equation (10) holds. This
completes the proof of Theorem 1. J

We need the following theorems proved by the author in [4] and [5].

Theorem B [4, Theorem 2.3]. If a function f ∈M (R; C) is Q′-integrable on R and a
function g is A-integrable on R, then their sum f + g ∈ M (R; C) is Q′-integrable on R,
and the following equation holds:

(
Q′
) ∫

R
[f (x) + g (x)] dx =

(
Q′
) ∫

R
f (x) dx+ (A)

∫
R
g (x) dx.

Theorem C [5, Theorem 4]. Let ν be a finite complex measure on the real axis R.
Then the equation (

Q′
) ∫

R
(Hν) (t) dt = 0,

holds.
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3. Riesz’s equality for the Hilbert transform of the finite complex
measures

Theorem 2. Let ν be a finite complex measure on the real axis R, the function g ∈ Lp (R),
p ≥ 1 be Hőlder continuous and g (t) ln (e+ |t|) be bounded on R. Then the function
g (t) (Hν) (t) is Q′-integrable on R and the following equation holds:

(
Q′
) ∫

R
g (t) (Hν) (t) dt = −

∫
R

(Hg) (t) dν (t) . (11)

Remark 2. Note that from the conditions of the theorem it follows that the function
(Hg) (t) is bounded on R and therefore the integral on the right-hand side of (11) exists.

Proof of Theorem 2. Let us consider the measure dµ (t) = g (t) dν (t). Then

(Hµ) (t) =
1

π

∫
R

g (τ) dν (τ)

t− τ
=

1

π

∫
R

g (τ)− g (t)

t− τ
dν (τ) + g (t) (Hν) (t) =

= J (t) + g (t) (Hν) (t) , (12)

where

J (t) =
1

π

∫
R

g (τ)− g (t)

t− τ
dν (τ) =

1

π

∫
(|t−τ |≤1)

g (τ)− g (t)

t− τ
dν (τ)+

1

π

∫
(|t−τ |>1)

g (τ) dν (τ)

t− τ
−

− 1

π

∫
(|t−τ |>1)

g (t) dν (τ)

t− τ
= J1 (t) + J2 (t)− J3 (t) . (13)

At first consider the case of µ (R) = 0. In this case, for every t 6= 0 we have the equality

J2 (t) =
1

π

∫
(|t−τ |>1)

g (τ) dν (τ)

t− τ
− 1

π

∫
R

g (τ) dν (τ)

t+ sgnt
=

=
1

π

∫
(|t−τ |>1)

τ + sgnt

(t− τ) (t+ sgnt)
g (τ) dν (τ)− 1

π

∫
(|t−τ |≤1)

g (τ) dν (τ)

t+ sgnt
. (14)

Then, by the conditions of the theorem, it follows that the integrals∫
R

(∫
(|t−τ |≤1)

∣∣∣∣g (τ)− g (t)

t− τ

∣∣∣∣ dt
)
dν (τ) ,

∫
R

(∫
(|t−τ |>1)

∣∣∣∣ τ + sgnt

(t− τ) (t+ sgnt)

∣∣∣∣ dt
)
g (τ) dν (τ) ,

∫
R

(∫
(|t−τ |≤1)

∣∣∣∣ 1

t+ sgnt

∣∣∣∣ dt
)
g (τ) dν (τ) ,

∫
R

(∫
(|t−τ |>1)

∣∣∣∣ g (t)

t− τ

∣∣∣∣ dt
)
dν (τ) ,

exist. Therefore it follows from Fubini’s theorem (see, for example, [13], Ch.5, §6) and
from (14) that the functions J1 (t), J2 (t) and J3 (t) are Lebesgue integrable. Hence we
obtain that the function J (t) in (13) is also Lebesgue integrable on R. It follows from the
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equality (12) and Theorems B and C that the function g (t) (Hν) (t) is Q′-integrable on R
and (

Q′
) ∫

R
g (t) (Hν) (t) dt =

(
Q′
) ∫

R
(Hµ) (t) dt−

∫
R
J (t) dt = −

∫
R
J (t) dt =

= −
∫
R
J1 (t) dt−

∫
R
J2 (t) dt+

∫
R
J3 (t) dt.

Then from the equations∫
R
J1 (t) dt =

1

π

∫
R

(∫
(|t−τ |≤1)

g (τ)− g (t)

t− τ
dν (τ)

)
dt =

=
1

π

∫
R

(∫
(|t−τ |≤1)

g (τ)− g (t)

t− τ
dt

)
dν (τ) ,

∫
R
J2 (t) dt =

1

π

∫
R

(∫
(|t−τ |>1)

τ + sgnt

(t− τ) (t+ sgnt)
g (τ) dν (τ)−

∫
(|t−τ |≤1)

g (τ) dν (τ)

t+ sgnt

)
dt =

=
1

π

∫
R

(∫
(|t−τ |>1)

τ + sgnt

(t− τ) (t+ sgnt)
dt−

∫
(|t−τ |≤1)

dt

t+ sgnt

)
g (τ) dν (τ) ,

∫
R
J3 (t) dt =

1

π

∫
R

(∫
(|t−τ |>1)

g (t)

t− τ
dν (τ)

)
dt =

1

π

∫
R

(∫
(|t−τ |>1)

g (t)

t− τ
dt

)
dν (τ) ,

we have

(
Q′
) ∫

R
g (t) (Hν) (t) dt = − 1

π

∫
R

(∫
(|t−τ |≤1)

g (τ)− g (t)

t− τ
dt

)
dν (τ)−

− 1

π

∫
R

(∫
(|t−τ |>1)

τ + sgnt

(t− τ) (t+ sgnt)
dt−

∫
(|t−τ |≤1)

dt

t+ sgnt

)
g (τ) dν (τ) +

+
1

π

∫
R

(∫
(|t−τ |>1)

g (t)

t− τ
dt

)
dν (τ) = −

∫
R

(Hg) (t) dν (t) .

That is, the equation (11) holds in case µ (R) = 0.
Now let’s consider the case µ (R) = d0 6= 0. Denote by ν1 the absolutely continuous

measure satisfying the condition
∫
R g (t) dν1 (t) = d0, and by ν2 the difference ν2 = ν− ν1.

Let dµi (t) = g (t) dνi (t), i = 1, 2. Then µ2 (R) = 0 and, according to the above case, we
have the equation

(
Q′
) ∫

R
g (t) (Hν2) (t) dt = −

∫
R

(Hg) (t) dν2 (t) . (15)

As the measure ν1 is absolutely continuous, then by Theorem A the equation
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(A)

∫
R
g (t) (Hν1) (t) dt = −

∫
R

(Hg) (t) dν1 (t) , (16)

holds. From the equations (15), (16) and by Theorem C it follows that(
Q′
) ∫

R
g (t) (Hν) (t) dt = (A)

∫
R
g (t) (Hν1) (t) dt+

(
Q′
) ∫

R
g (t) (Hν2) (t) dt =

= −
∫
R

(Hg) (t) dν1 (t)−
∫
R

(Hg) (t) dν2 (t) = −
∫
R

(Hg) (t) dν (t) .

This completes the proof of Theorem 2. J
Theorem 3. Let ν be a finite complex measure on the real axis R, and the function
g ∈ Lp (R), p ≥ 1 be Hőlder continuous on R. Then the integral

∫
(|g·Hν|≤1) g (t) (Hν) (t) dt

exists.
Proof of Theorem 3. Denote

I1 =

∫
(|g·Hν|≤1)

⋂
(|Hν|>1)

g (t) (Hν) (t) dt, I2 =

∫
(|g·Hν|≤1)

⋂
(|Hν|≤1)

g (t) (Hν) (t) dt.

Then it follows from the inequality (1) that

|I1| ≤ m (|Hν| > 1) ≤ c0 · ‖ν‖ <∞.

If g ∈ L1 (R), then

|I2| ≤
∫
(|g·Hν|≤1)

⋂
(|Hν|≤1)

|g (t)| dt ≤ ‖g‖1 <∞,

and if g ∈ Lp (R), p > 1, then it follows from the Hőlder’s inequality and the inequality
(1) that

|I2| ≤
∫
(|g·Hν|≤1)

⋂
(|Hν|≤1)

|g (t)| · |(Hν) (t)| dt ≤

(∫
(|Hν|≤1)

|(Hν) (t)|p
′
dt

) 1
p′

‖g‖p

=

( ∞∑
k=0

∫
(2−k−1<|Hν|≤2−k)

|(Hν) (t)|p
′
dt

) 1
p′

‖g‖p ≤

( ∞∑
k=0

2−kp
′
m
(
|Hν| > 2−k−1

)) 1
p′

‖g‖p

≤

(
2c0 ‖ν‖

∞∑
k=0

2−k(p
′−1)

) 1
p′

‖g‖p <∞.

It follows from these estimates that the integral
∫
(|g·Hν|≤1) g (t) (Hν) (t) dt exists. This

completes the proof of Theorem 3. J
Remark 3. It follows from Theorem 3 and Remark 1 that the equation (11) in Theorem
2 can be rewritten in the following way:
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lim
λ→+∞

∫
(|g·Hν|≤λ)

g (t) (Hν) (t) dt = −
∫
R

(Hg) (t) dν (t) .

Remark 4. In the class M (R; C), the Q′-integral coincides with the Q-integral (see
Theorem 1). Then, under conditions of Theorem 2, the function g (t) (Hν) (t) is Q-
integrable on R and the following equation holds:

(Q)

∫
R
g (t) (Hν) (t) dt = −

∫
R

(Hg) (t) dν (t) .
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