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General Inverse Sturm-Liouville Problem with Symmet-

ric Potential

V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov∗

Abstract. The uniqueness theorems for an inverse nonselfadjoint Sturm-Liouville problem with
symmetric potential and general boundary conditions are proved. The spectral data used for unique
reconstruction of Sturm-Liouville problems are a spectrum and six eigenvalues. The uniqueness
theorems for an inverse selfadjoint Sturm-Liouville problem with symmetric potential and non-
separated boundary conditions are also proved. These theorems use a spectrum and two (or
three) eigenvalues for unique reconstruction of Sturm-Liouville problems. The theorems generalise
G. Borg and N. Levinson’s classical results to the case of Sturm-Liouville problem with general
boundary conditions. Schemes for unique reconstruction of Sturm-Liouville problems with sym-
metric potential and general boundary conditions are given.
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1. Introduction

Let L denote the Sturm-Liouville problem

ly = −y′′ + q(x) y = λ y = s2 y, (1)

Ui(y) = ai1 y(0) + ai2 y
′(0) + ai3 y(π) + ai4 y

′(π) = 0, i = 1, 2, (2)

where q(x) ∈ L1(0, π) is a real function such that q(x) = q(π−x) almost everywhere (a.e.)
and the aij with i = 1, 2 and j = 1, 2, 3, 4 are complex constants.

The boundary value problem for differential equations of second order and the inverse
Sturm-Liouville problem for L in the case of separated boundary conditions (a13 = a14 =
a21 = a22 = 0) have been well studied (see [1, 2, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 20,
21, 24, 29, 30, 32, 34]). The inverse Sturm-Liouville problem with unknown coefficients
in nonseparated boundary conditions was studied by V.A. Sadovnichii, V.A. Yurko, V.A.
Marchenko, O.A. Plaksina, M.G. Gasymov, I.M. Guseinov, I.M. Nabiev, and other authors
(see [5, 7, 8, 9, 18, 22, 25, 26, 27, 28, 31, 33]).
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For the inverse problem of reconstructing L in which all coefficients aij with i = 1, 2
and j = 1, 2, 3, 4 are unknown, no uniqueness theorems have been proved. Special cases
of problem L with boundary conditions

V1(y) = a11 y(0) + y′(0) + a13 y(π) = 0, (3)

V2(y) = a21 y(0) + a23 y(π) + y′(π) = 0, (4)

and

P1(y) = y(0) + ω y(π) = 0 (5)

P2(y) = ω y′(0) + y′(π) + α y(π) = 0, (6)

have been earlier studied. Note that general selfadjoint nonseparated boundary conditions
(2) can be reduced to one of the following types:

(i) the boundary conditions (3),(4), where a11 and a23 are any real numbers, a13 6= 0 is
any complex number, and a21 = −a13;

(ii) the boundary conditions (5), (6), where ω 6= 0 is any complex number and α is any
real number.

To uniquely reconstruct these boundary value problems with asymmetric potential, in
addition to the spectrum of the problem itself, the spectra of two boundary value problems,
a certain sequence of signs, and a certain real number were used (see, e.g., [22, 23]).

In this paper, we prove a theorem on the unique reconstruction of problem L with
symmetric potential and general boundary conditions (2), which may be nonselfadjoint.
As spectral data only the eigenvalues of three spectral problems are used.

2. Generalizations of Borg’s Uniqueness Theorems

In 1946, Borg proved several uniqueness theorems for the solution of the inverse Sturm-
Liouville problem [6, p. 69]. Two of them referred to the following spectral problems B1

and B2 with q(x) ∈ L1(0, π).
Problem B1:

ly = −y′′ + q(x) y = λ y, y(0) = 0, y(π) = 0, q(x) = q(π − x) a.e.

Problem B2:

ly = −y′′ + q(x) y = λ y, y′(0) = 0, y′(π) = 0, q(x) = q(π − x) a.e.

For these problems, Borg proved the following theorems P1 and P2 (in Borg’s notation)
[6, p. 69].

Theorem P1. The function q(x) in (1) is uniquely determined by the spectrum of
Problem B1 if q(x) = q(x− π) a.e.
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Theorem P2. The function q(x) in (1) is uniquely determined by the spectrum of
Problem B2 if q(x) = q(x− π) a.e.

In this paper, we generalize these theorems to the case of general boundary conditions
(2).

In what follows, we denote a problem of type L, but with different coefficients in the
equation and different parameters in the boundary forms, by L̃. Throughout the paper,
we assume that if some symbol denotes an object from Problem L then the same symbol
with the tilde ˜ denotes the corresponding object from Problem L̃.

Let A be the matrix composed of coefficients alk of the boundary conditions (2), i.e.,

A =

∥∥∥∥
a11 a12 a13 a14
a21 a22 a23 a24

∥∥∥∥ , (7)

and let Mij be its minors composed of ith and jth columns:

Mij =

∣∣∣∣
a1i a1j
a2i a2j

∣∣∣∣ , i, j = 1, 2, 3, 4.

Vectors are denoted by boldface letters. The symbol T denotes transposition. Column
vectors are represented by rows with this superscript. For the rank of the matrix A we
use the notation rankA.

Together with Problems L, B1, and B2, we consider the following Problems L1 and
L2.

Problem L1.

ly = −y′′ + q(x) y = λ y,

U1,1(y) = y(0) − p(λ) y′(0) = 0,

U2,1(y) = y(π) = 0,

Problem L2.

ly = −y′′ + q(x) y = λ y,

U1,1(y) = y′(0)− p(λ) y(0) = 0,

U2,1(y) = y′(π) = 0.

In Problems L1 and L2, p(λ) is a polynomial of the form

p(λ) = M12 + (1−M13)λ+ (M14 −M32)λ
2 +M42 λ

3 +M34 λ
4.

Theorem 1. If Problems L and L̃ have a nonempty discrete spectrum; the spectra of
Problems L and L̃, B1 and B̃1, L1 and L̃1 coincide with algebraic multiplicities taken into
account; and rankA = 2, then these boundary value problems themselves coincide, i.e.,
q(x) = q̃(x) a.e. and the matrices A = (aij)2×4 and Ã = (ãij)2×4 of coefficients in the
boundary conditions coincide up to a linear transformation of their rows.
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Proof. Applying Borg’s uniqueness theorem P1 [6, p. 69] for the inverse Sturm-Liouville
problem with symmetric potential to Problem B1, we see that

q(x) = q̃(x) a.e. (8)

Let us show that, for the vectors N = (M12,M13,M14,M32,M42,M34)
T and Ñ =(

M̃12, M̃13, M̃14, M̃32, M̃42, M̃34

)T

composed of the minors of the matrices (aij)2×4 and

(ãij)2×4 respectively, we have

N = Ñ. (9)

Let y1(x, λ) and y2(x, λ) be linearly independent solutions of Eq. (1) satisfying the
conditions

y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1. (10)

The eigenvalues of Problem L are the roots of the entire function ([17, pp. 33–36], [19,
p. 29])

∆(λ) = M12 +M34 +M32 y1(π, λ) +M42 y
′

1
(π, λ)+

+M13 y2(π, λ) +M14 y
′

2
(π, λ),

(11)

and the eigenvalues of Problem L1 are the roots of the entire function

∆1(λ) = y2(π, λ)− p(λ) y1(π, λ).

If ∆(λ) 6≡ 0 (i.e., the spectrum of the boundary value problem is discrete), then,
according to Hadamard’s theorem, the function ∆(λ) (which is entire of order 1/2) can
be reconstructed from its zeros up to a factor C 6= 0. Therefore, the functions ∆(λ) and
∆̃(λ) are related by the identity

∆(λ) ≡ C ∆̃(λ), (12)

where C is a nonzero constant.
If ∆(λ) ≡ 0 (i.e., each λ is an eigenvalue of Problem L), then the condition that the

eigenvalues of Problems L and L̃ coincide also implies (12) (whence ∆̃(λ) ≡ 0).
Similarly, we have

∆1(λ) ≡ C1 ∆̃1(λ),

where C1 is a nonzero constant.
The following asymptotic relations hold:

y1(x, λ) = cos sx+
1

s
u(x) sin sx+O

(
1

s2

)
,

y2(x, λ) =
1

s
sin sx−

1

s2
u(x) cos sx+O

(
1

s3

)
,

y′1(x, λ) = −s sin sx+ u(x) cos sx+O

(
1

s

)
,

y′2(x, λ) = cos sx+
1

s
u(x) sin sx+O

(
1

s2

)
,
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where u(x) =
1

2

∫ x

0

q(t) dt,

for sufficiently large λ ∈ R ([19, pp. 62–65]).
It follows from these relations that the functions y1(π, λ) and y2(π, λ) in the decom-

position of the function ∆1(λ) are linearly independent. Therefore,

M12 = M̃12, M13 = M̃13, M14−M32 = M̃14−M̃32, M42 = M̃42, M34 = M̃34. (13)

The functions y1(π, λ) = y′
2
(π, λ), y′

1
(π, λ), y2(π, λ), and 1 in the decomposition of

∆(λ) are linearly independent as well (the relation y1(π, λ) = y′
2
(π, λ) holds if and only

if q(x) = q(x− π) [31, Lemma 4]). This observation, together with (11) and (12), implies

M12 +M34 = C (M̃12 + M̃34), M14 +M32 = C (M̃14 + M̃32),

M42 = C M̃42, M13 = C M̃13.
(14)

At least one of the numbers M12 +M34, M32 +M14, M42, and M13 is different from zero.
Otherwise, we would have ∆(λ) ≡ 0 in contradiction to the assumption of the theorem
that Problems L and L̃ have discrete spectrum. This observation, together with (13) and
(14), implies

C = 1, M12 = M̃12, M13 = M̃13, M14 = M̃14,

M32 = M̃32, M42 = M̃42, M34 = M̃34,

whence we obtain (9).
It follows from (9) (see [4, p.32]) that the matrices (aij)2×4 and (ãij)2×4 coincide up to

a linear transformation of the rows. Combining this with (8), we see that the boundary
value problems L and L̃ coincide.J

Under certain conditions, the following theorem (stronger than Theorem 1) holds true.

Theorem 2. If λ0 is an eigenvalue of Problem L, λi (i = 1, 2, 3, 4, 5) are any pairwise
distinct eigenvalues of Problem L1, y1(π, λi) 6= 0, i = 0, 1, 2, 3, 4, 5, and q(x) = q(π − x)
a.e., then Problems L, B1, and L1 are uniquely determined by the spectrum of Problem
B1 and λi, i = 0, 1, 2, 3, 4, 5, i.e. the function q(x) is uniquely determined and the matrix
(aij)2×4 is determined up to a linear transformation of the rows.

Proof. Applying Borg’s uniqueness theorem P1 [6] for the inverse Sturm-Liouville
problem with symmetric potential to Problem B1, we see that the function q(x) in (1) is
uniquely determined by the spectrum of Problem B1.

The numbers λi (i = 1, 2, 3, 4, 5) are eigenvalues of Problem L1, so ∆1(λi) = 0, i =
1, 2, 3, 4, 5. It now follows that

M12 + (1−M13)λi + (M14 −M32)λ
2

i +M42 λ
3

i +M34 λ
4

i =
y2(π, λi)

y1(π, λi)
. (15)

The determinant of system (15) with respect to the unknowns M12, (1 − M13), (M14 −
M32), M42, M34 is the fifth-order Vandermonde determinant equal to

∏
k1>k2

(λk1 − λk2).
Therefore, system (15) has a unique solution, which can be found by the Cramer formulas.
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Since λ0 is an eigenvalue of Problem L, it follows from (11) that

(M32 +M14) y1(π, λ0) = −(M12 +M34)−M42 y
′

1(π, λ0)−M13 y2(π, λ0) (16)

(y1(π, λ0) = y′
2
(π, λ0) iff q(x) = q(π − x) a.e.).

Combining (15) and (16), we see that the unknowns M12, M13, M14 M32, M42, M34

are uniquely determined. It follows (see [4, p.32]) that the matrix (aij)2×4 is determined
up to a linear transformation of the rows. Hence Problems L, B1, and L1 are uniquely
determined by the spectrum of Problem B1 and λi, i = 0, 1, 2, 3, 4, 5.J

Remark 1. If L = B1, then L = B1 = L1. Therefore, Borg’s uniqueness theorems P1 is
a special case of Theorems 1 and 2 proved above.

Scheme for identification of Problems L, L1, and B1.

On the basis of the theorems proved above, it is easy to obtain a procedure for recon-
structing Problem L. The potential q(x) can be reconstructed by any known method for
reconstructing the potential of a Sturm-Liouville problem (see [6, 7, 34]), and the bound-
ary conditions can be reconstructed by the methods for identifying boundary conditions
(see, e.g., [4]).

By Theorem 2, we can give the Scheme for identification of Problems L, L1, and B1:

Step 1. By Borg’s theorem P1 or M.G.Gasymov, I.M.Guseinov, and I.M.Nabiev’s
method [7], we find q(x).

Step 2. By the function q(x), we find the linearly independent solutions y1(x, λ) and
y2(x, λ) of equation (1), satisfying conditions (10).

Step 3. By the numbers λi, i = 0, 1, 2, 3, 4, 5 satisfying the conditions of Theorem 2,
we find the solution of systems (15) and (16) (M12, M13, M14 M32, M42, M34).

Step 4. By the determinants M12, M13, M14 M32, M42, M34, we find the matrix
(aij)2×4 determined up to a linear transformation of the rows. The matrix (aij)2×4 is
determined by the matrix identification methods (see [4, pp.33-34])).

Theorem 3. If Problems L and L̃ have a nonempty discrete spectrum; the spectra of
Problems L and L̃, B2 and B̃2, L2 and L̃2 coincide with algebraic multiplicities taken into
account; and rankA = 2, then these boundary value problems themselves coincide, i.e.,
q(x) = q̃(x) a.e. and the matrices A = (aij)2×4 and Ã = (ãij)2×4 of coefficients in the
boundary conditions coincide up to a linear transformation of their rows.

Proof. Applying Borg’s uniqueness theorem P2 [6] for the inverse Sturm-Liouville
problem with symmetric potential to Problem B2, we see that (8) holds almost everywhere.
Relation (9) is proved in the same way as in the proof of Theorem 1 with the only difference
that the characteristic function ∆1(λ) should be replaced by

∆2(λ) = −y′1(π, λ)− p(λ) y′2(π, λ)
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and instead of the linear independence of the functions y1(π, λ) and y2(π, λ) in the de-
composition of ∆1(λ) the linear independence of the functions y′

1
(π, λ) and y′

2
(π, λ) in

the decomposition of ∆2(λ) should be used.J

Under certain conditions, the following theorem (stronger than Theorem 3) holds true.

Theorem 4. If λ0 is an eigenvalue of Problem L, λi (i = 1, 2, 3, 4, 5) are any pairwise
distinct eigenvalues of Problem L1, y1(π, λi) 6= 0, i = 0, 1, 2, 3, 4, 5, and q(x) = q(π − x)
a.e., then Problems L, B2, and L2 are uniquely determined by the spectrum of Problem
B2 and λi, i = 0, 1, 2, 3, 4, 5, i.e. the function q(x) is uniquely determined and the matrix
(aij)2×4 is determined up to a linear transformation of the rows.

Proof. This theorem is proved in the same way as Theorem 3 with the only difference
that the system (15) should be replaced by

M12 + (1−M13)λi + (M14 −M32)λ
2

i +M42 λ
3

i +M34 λ
4

i = −
y′
1
(π, λi)

y1(π, λi)
(17)

and instead of the linear independence of the functions y1(π, λ) and y2(π, λ) in the de-
composition of ∆1(λ) the linear independence of the functions y′

1
(π, λ) and y′

2
(π, λ) in

the decomposition of ∆2(λ) should be used.J

Remark 2. If L = B2, then L = B2 = L2. Therefore, Borg’s uniqueness theorem P2 is a
special case of Theorems 3 and 4.

Scheme for identification of Problems L, L2, and B2 is similar to the scheme for
identification of Problems L, L1, and B1.

3. Generalizations of Levinson’s Uniqueness Theorem

In 1949, Levinson considered the following Sturm-Liouville problem L0 with symmetric
potential [12].

Problem L0:

ly = −y′′ + q(x) y = λ y, y′(0)− h y(0) = 0, y′(π) + h y(π) = 0, h ∈ R.

For this problem, Levinson proved the following theorem.

Theorem. If q(x) = q(x− π), then the function q(x) and the number h are uniquely
determined by the spectrum of Problem L0.

This section contains generalizations of this theorem to the case of noseparated bound-
ary conditions.

Consider the following spectral problem.

Problem Y1 :

ly = −y′′ + q(x) y = λ y,
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U1,1(y) = a11 y(0) + y′(0) − a21 y(π) = 0,

U2,1(y) = a21 y(0) + a23 y(π) + y′(π) = 0, a11, a21, a23 ∈ R.

The boundary conditions of Problem Y1 coincide with the boundary conditions (3),(4),
where a11, a23, a13, and a21 are any real numbers and a21 = −a13. Yurko showed in
[33] that Problem Y1 can be uniquely reconstructed from two spectra and a sequence of
signs, namely, from the spectrum of Problem Y1, the spectrum {zn} of the problem for
Eq. (2) and boundary conditions y′(0) + a11 y(0) = y(π) = 0, and the sequence of signs
ωn = sign (|θ′(π, zn)| − |a21|), where θ(x, λ) is the solution of Eq. (2) under the boundary
conditions θ(0, λ) = 1, θ′(0, λ) = −a11.

In what follows, we show that if the potential of Problem Y1 is symmetric, then Problem
Y1 can be reconstructed from two spectra (a sequence of signs is not needed in this case).

Let Y2 denote the following spectral problem.

Problem Y2 :

−y′′ + q(x) y = λ y, a11 y(0) + y′(0) = 0, −a11 y(π) + y′(π) = 0.

Theorem 5. If q(x) = q(π− x), q̃(x) = q̃(π− x), and the spectra of Problems Y1 and Ỹ1,
Y2 and Ỹ2 coincide with algebraic multiplicities taken into account, then these boundary
value problems themselves coincide, i.e., q(x) = q̃(x), a11 = ã11, a21 = ã21, and a23 = ã23.

Proof. Applying Levinson’s uniqueness theorem [12] to problem Y2, we see that, for
the inverse Sturm-Liouville problem with symmetric potential,

q(x) = q̃(x), a11 = ã11. (18)

To prove the theorem, it remains to prove the relations a21 = ã21 and a23 = ã23. The
eigenvalues of Problem Y1 are the roots of the entire function

∆3(λ) = −a21 − a23 y1(π, λ)− y′
1
(π, λ)+

+(a11 a23 + a2
21
) y2(π, λ) + a11 y

′

2
(π, λ).

(19)

According to Hadamard’s theorem, the function ∆(λ) (which is entire of order 1/2) can
be reconstructed from its zeros up to a multiplier C 6= 0. Therefore, the functions ∆3(λ)
and ∆̃3(λ) are related by the identity

∆3(λ) ≡ C3 ∆̃3(λ), (20)

where C is a nonzero constant.

It follows from the asymptotic relations that the functions y′
1
(π, λ), y′

2
(π, λ) ≡ y1(π, λ),

y2(π, λ), and 1 are linearly independent. Therefore, C3 = 1, a21 = ã21, a23 = ã23.J

Under certain conditions, stronger results than Theorem 5 hold true.
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Suppose value a11 and function q(x) are reconstructed. Then linearly independent
solutions y1(x, λ) and y2(x, λ) of equation (1) under conditions (10) are known. So we
can state the following conditions.

Condition 1. Numbers λ1 and λ2 satisfy equations

y2(π, λ1) = y2(π, λ2) = 0.

and inequalities

y1(π, λ2)− y1(π, λ1) 6= 0.

Condition 2. Numbers λ1, λ2 and λ3 satisfy equation

∣∣∣∣∣∣

1 y1(π, λ1)− a11 y2(π, λ1) y2(π, λ1)
1 y1(π, λ2)− a11 y2(π, λ2) y2(π, λ2)
1 y1(π, λ3)− a11 y2(π, λ3) y2(π, λ3)

∣∣∣∣∣∣
6= 0.

Theorem 6. If λ1 and λ2 are eigenvalues of Problem Y1 and satisfy Condition 1, then
Problems Y1 and Y2 (the function q(x) and coefficients a11, a21 and a23) are uniquely
determined by the spectrum of Problem Y2 and λi, i = 1, 2.

Proof. Applying Levinson’s uniqueness theorem [12] to problem Y2, we see that the
function q(x) and the coefficient a11 are uniquely determined by the spectrum of Problem
Y2. To prove the theorem, it remains to find the coefficients a21 and a23.

The numbers λi (i = 1, 2) are eigenvalues of Problem Y1, so ∆3(λi) = 0, i = 1, 2. It
now follows that

a21 + a23 y1(π, λi) = −y′
1
(π, λi) + a11 y

′

2
(π, λi), i = 1, 2. (21)

The determinant of system (21) with respect to the unknowns a21 and a23 is equal to(
y1(π, λ2) − y1(π, λ1)

)
6= 0. Therefore, system (21) has a unique solution, which can be

found by the Cramer formulas.
Hence Problems Y1 and Y2 are uniquely determined by the spectrum of Problem Y2

and two eigenvalues of Problem Y1.J

Theorem 7. If λ1, λ2 and λ3 are eigenvalues of Problem Y1 and satisfy Condition 2,
then Problems Y1 and Y2 (the function q(x) and coefficients a11, a21 and a23) are uniquely
determined by the spectrum of Problem Y2 and λi, i = 1, 2, 3.

Proof. This theorem is proved in the same way as Theorem 6 with the only difference
that the system (21) should be replaced by the system of three equations

a21 + a23
(
y1(π, λi)− a11 y2(π, λi)

)
− a2

21
y2(π, λ) = −y′

1
(π, λi) + a11 y

′

2
(π, λi) (22)

with respect to three unknowns a21, a23, a
2
21
. J
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Remark 3. Note that Levinson’s uniqueness theorem is a special case of Theorems 5,
6 and 7 proved above. Indeed, for L = L0, i.e., in the case where a11 = −h, a12 = 1,
a13 = a14 = 0, a21 = a22 = 0, a23 = h, and a24 = 1, we have Y1 = Y2; therefore, the
problem of identification from the spectrum of Problem Y2 and the eigenvalues of Problem
Y1 reduces to the problem of identification from one spectrum.

By Theorems 6 and 7 we can give the Scheme for identification of Problems Y1 and
Y2:

Step 1. By N.Levinson’s theorem, we find q(x) and coefficient a11.
Step 2. By the function q(x), we find the linearly independent solutions y1(x, λ) and

y2(x, λ) of equation (1), satisfying conditions (10).
Step 3. By the eigenvalues λi, i = 1, 2 (or i = 1, 2, 3) of Problem Y1 satisfying

Condition 1 (or Condition 2), we find the solution of system (21) or (22) (the coefficients
a21 and a23).

4. Further Generalisations

In [18], Borg’s theorems P1 and P2 and M.G.Gasymov, I.M.Guseinov, and I.M.Nabiev’s
results [7] were generalized to the case where Eq. (1) is replaced by

ly = −y′′ + 2 s q1(x) + q(x) y = s2 y, (23)

where q1(x) ∈ W 1
2
(0, π), and q(x) ∈ L2(0, π) are real functions, q(x) = q(π − x), and

q1(x) = q1(π − x). It can be shown by using these results and the methods applied in the
proofs of Theorems 1 and 3 that, in this case, the three spectra uniquely determine not
only the function q(x) and the boundary conditions (2), but also the function q1(x).

It follows from [18, Remark 2, p. 40] that Theorem 5 can be generalized to the case
where the equation (1) is replaced by the equation (23). In this case, not only the function
q(x) and the boundary condition, but also the function q1(x) can be uniquely reconstructed
using two spectra

The corresponding analogues of Theorems 2, 4, 6 and 7 can be also proved.
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