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On Poincaré Series of Filtrations
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Abstract. In this survey we discusses the notion of the Poincaré series of multi-index filtrations,
an alternative approach to the definition, a method of computation of the Poincaré series based
on the notion of integration with respect to the Euler characteristic (or rather on an infinite-
dimensional version of it), generalizations of the notion of the multi-variable Poincaré series based
on the notion of the motivic integration, and relations of the latter ones with some zeta functions
over finite fields and with generating series of Heegaard-Floer homologies of algebraic links.
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1. Introduction

Let (V, 0) be a germ of a complex analytic space. A decreasing filtration on the ring
OV,0 of germs of functions on (V, 0) is a decreasing sequence of vector subspaces (sometimes
ideals) {Ji} in OV,0:

OV,0 = J0 ⊃ J1 ⊃ J2 ⊃ . . .

An important invariant of a filtration is its Poincaré series

P (t) =
∞∑

i=0

dim(Ji/Ji+1) · t
i . (1)

The Poincaré series P (t) is defined if all the factors Ji/Ji+1 are finite-dimensional or, in
other words, if OV,0/Ji is finite-dimensional for each i. It is a formal power series with
integer coefficients, that is an element of the ring Z[[t]] of formal power series in the
variable t.

As an example one can consider the filtration defined on the ring OCn,0 of germs
of functions in n variables by an irreducible germ of a curve (C, 0) ⊂ (Cn, 0). Let ϕ :
(C, 0) → (Cn, 0) be a parameterization (an uniformization) of the curve (C, 0), i.e. a
complex analytic map such that Imϕ = C and ϕ is an isomorphism between C and C
outside the origin. For a function germ g : (Cn, 0) → C, let ν(g) be the order of zero of the
composition g◦ϕ : (C, 0) → C at the origin, i.e. g◦ϕ(τ) = a(g)τν(g)+term of higher order,
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where a(g) 6= 0. If g ◦ ϕ ≡ 0, one assumes that ν(g) = +∞. The function ν : OCn,0 →
Z ∪ {+∞} is a valuation on OCn,0, i.e. ν(λg) = ν(g) for a non-zero complex number λ,
ν(g1 + g2) ≥ min(ν(g1), ν(g2)), and ν(g1g2) = ν(g1) + ν(g2). The filtration corresponding
to the valuation ν is defined by

Ji = {g ∈ OCn,0 : ν(g) ≥ i} .

(The subspace Ji is an ideal in OCn,0.)

Assume that n = 2, i.e. (C, 0) is an irreducible plane curve singularity, and let (C, 0)
be defined by an equation f = 0, where f : (C2, 0) → (C, 0) is a germ of a function in
two variables. In [15] it was shown that the Poincaré series of the filtration {Ji} (being a
priori an analytic invariant of (C, 0)) coincides with the so called monodromy zeta function
(see the definition, e.g., in [1]) of the germ f . This coincidence was obtained by direct
computations of the both objects in the same terms. Up to now there is no conceptual
proof of this relation.

Generalization of the notion of the Poincaré series of a usual (one-index) filtration to
multi-index filtrations is far from being straightforward. (Even there are different versions
of a definition of a multi-index filtration which demand somewhat different definitions of
the Poincaré series.) There were found generalizations of the described relation between
the Poincaré series and the monodromy zeta function in the multi-index setting.

Also there were constructed certain equivariant (with respect to an action of a finite
group G) versions of the Poincaré series of filtrations, see, e.g., [5], [7]. In [7] an equivariant
version of the Poincaré series was not a power series, but an element of the Grothendieck
ring of (“locally”) finite G-sets with additional structures.

In this survey we discuss the notion of the Poincaré series of multi-index filtrations,
a method of computation of the Poincaré series based on the notion of integration with
respect to the Euler characteristic (or rather on an infinite-dimensional version of it),
generalizations of the notion of the multi-variable Poincaré series based on the notion of
the motivic integration, and relations of the latter ones with some zeta functions over
finite fields and with generating series of Heegaard-Floer homologies of algebraic links.

2. Multi-index filtrations

A function ν : OV,0 → Z≥0 ∪ {+∞} is called a valuation if the following conditions are
fulfilled

1) ν(λg) = ν(g) for λ ∈ C, λ 6= 0;

2) ν(g1 + g2) ≥ min(ν(g1), ν(g2));

3) ν(g1g2) = ν(g1) + ν(g2).

A function ν : OV,0 → Z≥0∪{+∞} is called an order function if it possesses the properties
1) and 2) above.
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A (usual, one-index) filtration {Ji} on OV,0 can be defined by the order function

ν(g) := max{i : g ∈ Ji} .

Namely, Ji = {g ∈ OV,0 : ν(g) ≥ i}. The order function ν will be called finite if the
quotients OV,0/Ji are finite dimensional for all i.

There are two possible generalizations of the notion of a filtration to a multi-index
setting, i.e. when the elements of the filtration are numbered not by non-negative integers,
but by elements of Z

r
≥0 = {v = (v1, . . . , vr) : vi ∈ Z≥0}. For v′ = (v′1, . . . , v

′
r) and

v′′ = (v′′1 , . . . , v
′′
r ), one says that v′ ≥ v′′ if v′i ≥ v′′i for all i. A multi-index (r-index)

filtration on OV,0 is defined by a system {Jv} of vector subspaces of OV,0 for all v ∈ Z
r
≥0.

In any case one assumes that J0 = OV,0 (0 = (0, . . . , 0)) and Jv′ ⊂ Jv′′ for v
′ ≥ v′′. In the

first (less restrictive) approach these are the only conditions. In the second one we should
assume that the filtration is defined by a collection {νi}1=1,...,r of order functions on OV,0.
This means that

Jv = {g ∈ OV,0 : ν(g) ≥ v} , (2)

where ν(g) := (ν1(g), . . . , νr(g)). In terms of the subspaces Jv themselves this condition
can be formulated in the following way. For two elements v′ = (v′1, . . . , v

′
r) and v′′ =

(v′′1 , . . . , v
′′
r ) from Z

r
≥0, let us define max(v′, v′′) ∈ Z

r
≥0 as (max(v′1, v

′′
1 ), . . . ,max(v′r, v

′′
r )).

One can show that a multi-index filtration Jv is defined by a collection of order functions
if and only if Jmax(v′,v′′) = Jv′ ∩ Jv′′ for any v

′ and v′′. In what follows (except Section 3)
we shall consider multi-index filtrations defined by collections of order functions.

An example of a filtration not defined by order functions can be constructed in the
following way (see [16]). Let I be an ideal in OV,0 and let (W, 0) be a subscheme of (V, 0)
defined by the ideal I. This means that OW,0 = OV,0/I. Let {Jv}v∈Zr

≥0
be an arbitrary

multi-index filtration on OV,0 (possibly defined by a collection of order functions). The
embedded filtration on OW,0 induced by the filtration {Jv} is the filtration {Iv} defined by

Iv = φ(Jv) ,

where φ : OV,0 → OW,0 = OV,0/I is the canonical factorization map. One can show that
in general the filtration {Iv} on OW,0 is not defined by order functions.

3. Poincaré series of multi-index filtrations

The notion of the Poincaré series of a multi-index filtration was first introduced in
[9] (for filtrations defined by collections of valuations). The definition is far from being a
straightforward generalization of (1).

Let {Jv} be a multi-index filtration on OV,0. We shall assume that the subspaces Jv
are defined not only for v ∈ Z

r
≥0, but for all v ∈ Z

r. This can be done using the definition

Jv := Jmax(v,0) for v ∈ Z
r ,

where 0 = (0, . . . , 0). If the filtration {Jv} is defined by a collection {νi}i=1,...,r of order
functions on OV,0, this means that Jv is given by the equation (2) for all v ∈ Z

r.
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Let

L(t1, . . . , tr) :=
∑

v∈Zr

dim(J(v)/J(v + 1))t v ,

where 1 = (1, 1, . . . , 1) ∈ Z
r, t := (t1, . . . , tr), t

v := tv11 · . . . · tvrr . This equation makes sense
if and only if all the quotients J(v)/J(v + 1) are finite-dimensional. This is equivalent to
the condition that all the quotients OV,0/J(v) are finite-dimensional. The series L(t) is an
element of the set (a lattice, that is a free Z-module) of formal Laurent series in t1, . . . , tr
with integer coefficients. This set is not a ring: one cannot, in general, multiply two series
of this sort. However it is a module over the ring Z[t1, . . . , tr] of polynomials in t1, . . . , tr
with integer coefficients. (In fact also a module over the ring of Laurent polynomials in
t1, . . . , tr.) If vi < 0 at least for one i, one has Jv = J(v1,...,vi−1,0,vi+1,...,vr). This implies
that L(t1, . . . , tr) ·

∏r
i=1(ti− 1) does not contain monomials with negative exponents, that

is it is an element of the ring Z[[t1, . . . , tr]] of formal power series in t1, . . . , tr. In [9] the
authors offered the following notion.

Definition 1. The Poincaré series of the filtration {Jv} is

P (t1, . . . , tr) =
L(t1, . . . , tr) ·

∏r
i=1(ti − 1)

t1 · . . . · tr − 1
. (3)

This definition can be (and sometimes is) used for the both types of filtrations described
in Section 2. However, properties of the Poincaré series and methods of their computation
are quite different in these cases. In order to indicate the filtration or (in the case if the
filtration is defined by order functions) the system of order functions, one uses the notation
P{Jv}(t) or P{νi}(t).

By computing the right hand side of (3) and taking into account that Jv = J0 = OV,0

for v ≤ 0, it is easy to check that for every v the coefficient at tv in the Poincaré series
P (t1, . . . , tr) is equal to

−
∑

K⊂{1,...,r}

(−1)|K| dimOV,0/Jv+1K = −χ(C ′
•,v) ,

where 1K is the element of the lattice Z
r whose components with the numbers from K are

equal to 1 and the other components are equal to 0, C ′
•,v is the chain complex of vector

spaces whose chain spaces are

C ′
i,v =

⊕

K⊂{1,...,r},|K|=i

OV,0/Jv+1K

and the chain map ∂i : C
′
i,v → C ′

i−1,v on the components corresponding to K and K ′ with

|K| = i and |K ′| = i − 1 is equal to 0 if K ′ 6⊂ K and is equal to (−1)` times the natural
map OV,0/Jv+1K → OV,0/Jv+1K′ if K ′ = K \ {k} and k is the `th integer in the natural
order among those in K.
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Since Jv+1 ⊂ Jv+1K for each K, one can also define the chain complexes C•,v and C ′′
•,v

given by

Ci,v =
⊕

K⊂{1,...,r},|K|=i

Jv+1K/Jv+1

and

C ′′
i,v =

⊕

K⊂{1,...,r},|K|=i

OV,0/Jv+1,

respectively with the chain maps defined in the same way as above. Since the vector spaces
in the sum for C ′′

i,v are all the same, one has χ(C ′′
•,v) = 0 (since C ′′

•,v is nothing but the
complex counting the augmented homologies of the (r − 1)-dimensional simplex with the
coefficients in OV,0/Jv+1). Thus one gets that the coefficient at tv in P (t1, . . . , tr) is also
given by χ(C•,v) = −χ(C ′

•,v) and therefore one has the equations

P (t1, . . . , tr) =
∑

v∈Z≥0

χ(C•,v)t
v = −

∑

v∈Z≥0

χ(C ′
•,v)t

v . (4)

Moreover, one also has the equations involving the homology spaces:

χ(C•,v) =
r∑

i=0

(−1)ihi,v , χ(C ′
•,v) =

r∑

i=0

(−1)ih′i,v , (5)

where hi,v = dimHi(C•,v), h
′
i,v = dimHi(C

′
•,v). One has hi,v = h′i−1,v for all v and i.

The chain complexes considered above are defined even if the spaces Jv/Jv+1 or, equiv-
alently, the spaces OV,0/Jv are not finite dimensional. In fact it is possible that the values
hi,v (or equivalently the values h′i,v) are finite for all v and i even if the spaces Jv/Jv+1

are not finite dimensional. This motivates the following (more universal) definition of the
Poincaré series of a filtration.

Definition 2. If hi,v is finite for all v ≥ 0 and i = 0, 1, . . . , r then the Poincaré series of
the filtration {Jv} is defined by

P{Jv}(t) =
∑

v∈Zr
≥0

r∑

i=0

(−1)ihi,vt
v = −

∑

v∈Zr
≥0

r∑

i=0

(−1)ih′i,vt
v . (6)

For filtrations given by order functions one of which is finite, in [10] it is proved that
all the dimensions hi,v are finite and therefore the Poincaré series can be defined by the
equation (6). In particular, this is the case if one of them is the order function defined by
the maximal ideal m of OV,0 or if it is a valuation centered at this ideal.

When all the order functions are not finite, the Poincaré series is also defined in some
cases. For instance, this happens if (V, 0) is the germ of a toric variety, the order functions
from the collection are monomial valuations and the vector spaces

H0,v = Jv/
(
Jv+11 + Jv+12 + . . . + Jv+1r

)
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are finite dimensional: see [10]. In this case one can prove that χ(C•,v) = h0,v = dimH0,v.
As an example, if (V, 0) = (C2, 0), r = 2, and ν1 and ν2 are the x-order and the y-order
valuations respectively, one gets P{ν1,ν2}(t1, t2) =

1
(1−t1)(1−t2)

.

Another example is when (V, 0) is irreducible and one considers a collection {ν1, . . . , νr}
of discrete valuations on it and a function germ f ∈ OV,0 such that νi(f) < +∞. One has
two filtrations: the one on OV,0 defined by the collection {ν1, . . . , νr} and the embedded
filtration {Iv} on the hypersurface germ {f = 0} ⊂ (V, 0). Assume that the Poincaré
series P{νi}(t) for the initial filtration on OV,0 can be defined by the equation (6). In [16]
and [10] it was shown that the Poincaré series P{Iv}(t) of the embedded filtration can be
defined by the same equation and one has

P{Iv}(t) = (1− tq)P{νi}(t) ,

where q = (ν1(f), . . . , νr(f)).

4. Poincaré series and the Hilbert functions

A somewhat more traditional invariant of a multi-index filtration is the so-called
Hilbert function h : Zr

≥0 → Z≥0 defined by

h(v) = dimOX,0/Jv . (7)

This function is defined if and only if all the quotients OX,0/Jv have finite dimensions,
i.e. if and only if the Poincaré series can be defined by the equation (3). Note that the
definition (7) makes sense for all v ∈ Z

r. It can be described by its generating function
which can be defined either as a formal power series

H̃(t) =
∑

v∈Zr
≥0

h(v) · tv ,

or as a formal Laurent series
H(t) =

∑

v∈Zr

h(v) · tv .

One can easily see that the series H̃(t) and H(t) determine each other.
One can show that

P (t) = −t−1H(t)

r∏

i=1

(ti − 1) .

(This equation can be deduced, e.g., from (4).) This means that the Poincaré series of a
multi-index filtration is determined by the generating function H(t), that is by the Hilbert
function.

Since ti − 1 is a divisor of zero in the module of formal Laurent series ((ti − 1)(. . . +
t−2
i + t−1

i +1+ t1i + t
2
i + . . .) = 0), one cannot, in general, restore the Hilbert function from

the Poincaré series and thus the Hilbert function is a more fine invariant.
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As an example one can take two germs of curves C = C1 ∪ C2 ⊂ (C5, 0) (respectively
C ′ = C ′

1 ∪C
′
2 ⊂ (C6, 0)), whose branches C1 and C2 (resp. C ′

1 and C ′
2) are defined by the

parameterizations (t ∈ C, u ∈ C):

C1 = {(t2, t3, t2, t4, t5)} , C2 = {(u2, u3, u4, u2, u6)}

(resp. C ′
1 = {(t3, t4, t5, t4, t5, t6)} , C ′

2 = {(u3, u4, u5, u5, u6, u7)} ).

The local rings OC,0 and OC′,0 of the curves C and C ′, as subrings of the normalizations
C{t} × C{u}, are:

OC,0 = C{ (t2, u2), (t3, u3), (t2, u4), (t4, u2), (t5, u6) },

OC′,0 = C{ (t3, u3), (t4, u4), (t5, u5), (t4, u5), (t5, u6), (t6, u7) } .

An easy computation shows that in the both cases the Poincaré series is the polynomial
P (t) = 1 + t31t

3
2. However one has h(3, 3) = 1 for the curve C ′ and h(3, 3) = 3 for C.

In [8] it was shown that the Hilbert function contains the same information about a
filtration as the so-called generalized Poincaré series discussed in Section 6. For filtrations
on the ring OC2,0 of germs of functions in two variables defined by valuations it was shown
([8]) that the Hilbert function determines the topological type of the set of valuations,
that is the topological type of its minimal resolution. (In [6] it was shown that in this
situation the Poincaré series, in general, does not determine the topological type of the
set of valuations.)

5. Poincaré series of filtrations and integration with respect to the

Euler characteristic

The definition (3) (and even the definition (1) for a one-index filtration) does not give,
in general, a direct way to compute the Poincaré series of a filtration.

One method to compute the Poincaré series is based on a reformulation of the definition
(3) in terms of the Euler characteristic. Let {Jv}, v ∈ Z

r
≥0, be a multi-index filtration on

OV,0 defined by a collection {νi} of order functions. For v ∈ Z
r
≥0 and g ∈ OV,0, ν(g) = v if

and only if g ∈ Jv and g /∈ Jv+1i for all i = 1, . . . , r, where 1i = (0, . . . , 0, 1, 0, . . . , 0) with
1 at the ith place. Let

Fv := (Jv/Jv+1) \

(
r⋃

i=1

Jv+1i/Jv+1

)
⊂ Jv/Jv+1 .

The set Fv is the complement to an arrangement of vector subspaces (Jv+1i/Jv+1, i =

1, . . . , r) in a vector space (Jv/Jv+1). The disjoint union Ŝ =
∐

v∈Zr
≥0

Fv of the sets Fv is

called the extended semigroup of the filtration {Jv} or of the collection of order functions
{νi}. It is really a semigroup if νi are valuations. The set Fv is invariant with respect
to multiplication by non-zero complex numbers. Let PFv = Fv/C

∗ ⊂ P(Jv/Jv+1) be
the projectivization of the set Fv. It is the complement to an arrangement of projective
subspaces in a projective space.
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For a (good enough) topological space X (say, for a semi-algebraic set) let χ(X) be its
Euler characteristic defined by:

χ(X) =
∞∑

q=1

(−1)q dimHq
c (X;R) , (8)

where Hq
c (•) are cohomology groups with compact support. Euler characteristic defined

this way is not a homotopy invariant. It is an invariant of the homotopy type defined
in terms of proper maps (i.e. maps such that the preimage of a compact subspace is
compact). An important property of this Euler characteristic is its additivity: χ(X) =
χ(Y ) + χ(X \ Y ) for a closed (semi-algebraic) subset Y ⊂ X. The Euler characteristic
defined in the same way through the usual cohomology groups is a homotopy invariant, but
is not additive. For example, for X and Y being the circle and its point, respectively, the
both Euler characteristics of X and Y are equal to 0 and 1, respectively. (These two Euler
characteristics coincide for compact spaces.) The complement X \ Y is homeomorphic
to the open interval. Its “usual” Euler characteristic (that is the Euler characteristic
defined through the usual cohomology groups) is equal to 1 (since the interval is homotopy
equivalent to the point), whence its Euler characteristic defined by (8) is equal to (−1).
The additivity of the Euler characteristic (8) implies the inclusion-exclusion formula for
it.

Remark 1. In fact, these two Euler characteristics also coincide for complex quasi-
projective varieties. (A quasi-projective variety is a projective variety minus another
projective variety.)

Let the filtration {Jv} be defined by a system {νi} of order functions, i = 1, . . . , r.
One can show that in this case

P (t) =
∑

v∈Zr
≥0

χ(PFv)t
v . (9)

This follows essentially from two facts. First, the multiplication by
∏r

i=1(ti − 1) can
be interpreted as the inclusion-exclusion formula applied to the coefficients of a series.
Second, the Euler characteristic of the projectivization of a (finite-dimensional) complex
vector space is equal to its dimension. Another way to prove (9) is to show directly that
χ(PFv) = χ(C•,v) (see (4)).

The right hand sides of the equations (3) and (9) can be interpreted as certain integrals
with respect to the Euler characteristic. This notion was first formulated precisely in [20].
Here we shall formulate it for the category of real constructible sets. A semi-algebraic
real set is a subset of a real projective space defined in affine charts by a finite collection
of algebraic equations and algebraic inequalities (>, <, ≥, ≤). A constructible set is the
union of a finite number of semi-algebraic sets. The constructible subsets of a projective
space constitute an algebra of sets. The Euler characteristic of a semi-algebraic set is
defined by the equation (8). The additivity of the Euler characteristic permits to extend
it to all constructible sets.
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Let X be a constructible set and let A be an abelian group. A function ψ : X → A
is called constructible if it has a finite number of values and for each a ∈ A the level
set ψ−1(a) is constructible. The additivity of the Euler characteristic on the algebra of
constructible subsets of X permits to use it as a sort of a (non-positive) measure for an
analogue of integration. The integral of a constructible function ψ over X with respect to
the Euler characteristic is defined by

∫

X
ψdχ =

∑

a∈A

χ(ψ−1)a . (10)

The right hand side of this equation can be regarded as an integral sum. It makes sense
since it contains finitely many summands.

The integral with respect to the Euler characteristic possesses many properties of the
usual integral. In particular, one has the Fubini formula for it. Let p : X → Y be a
constructible map. (This means that its graph in X ×Y is constructible.) Let us consider
the function ∫

p−1(y)
ψdχ

on Y . One can show that this function is constructible (first it was proved in [19]) and
one has ∫

X
ψdχ =

∫

Y

(∫

p−1(y)
ψdχ

)
dχ .

In these terms the equation (9) can be written as an integral with respect to the Euler
characteristic:

P (t) =

∫

PŜ
tvdχ , (11)

where v : PŜ → Z
r
≥0 is the tautological function on PŜ sending the component PFv to v.

In [3] the notion of the integral with respect to the Euler characteristic was extended to
integrals over the infinite-dimensional space POV,0. The idea was to consider “approxima-
tions” of POV,0 by the finite-dimensional projective spaces PJk

V,0, where J
k
V,0 := OV,0/m

k+1

is the space of k-jets of functions on (V, 0). (Here m is the maximal ideal in OV,0, i.e.,
the set of functions with the value 0 at the origin.) After that the integral over the
infinite-dimensional space POV,0 is defined as the limit of appropriate integrals over the
finite-dimensional spaces PJN

k,0.

The precise definition is the following. Let dk = dimJk
V,0 = codimm

k+1 and let

P
∗Jk

V,0 be the disjoint union of PJk
V,0 with a point (in some sense P

∗Jk
V,0 = Jk

V,0/C
∗).

One has the natural maps πk : POV,0 → P
∗Jk

V,0 and πk,` : P∗Jk
V,0 → P

∗J`
V,0 for k ≥ `.

Over PJ`
V,0 ⊂ P

∗J`
V,0 the map πk,` is a locally trivial fibration, the fibre of which is a

complex vector space of dimension dk − d`. (E.g., for V = C
n this dimension is equal to(

n+k
k

)
−
(
n+`
`

)
.) A subset X ⊂ POCn,0 is called cylindric if X = π−1

k (Y ) for a constructible
subset Y ⊂ PJk

V,0 ⊂ P
∗Jk

V,0. For a cylindric subset X ⊂ POV,0 (X = π−1
k (Y ), Y ⊂ PJk

V,0)
its Euler characteristic χ(X) is defined as the Euler characteristic χ(Y ) of the set Y . A
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function ψ : POV,0 → A with values in an abelian group A with not more than countably
many values is called cylindric if, for each a 6= 0, the set ψ−1(a) ⊂ POV,0 is cylindric.
Now the integral of a cylindric function ψ over the space POV,0 with respect to the Euler
characteristic is defined by the same equation (10) (where X = POV,0) with the only
difference that the right hand side of it may contain infinitely many summands and thus
may make no sense in A (“not to be convergent”). If the right hand side of (10) makes
sense in A, the function ψ is said to be integrable.

This definition (together with the interpretation of the dimensions of vector spaces as
the Euler characteristics of their projectivizations) permits to rewrite the equation (9) as

P (t) =

∫

POV,0

tν(g)dχ (12)

(where one assumes that t+∞
i = 0).

The equation (12) turned out to give a powerful method to compute the Poincaré series
of filtrations in a number of cases: see, e.g., [3], [11], [4]. An example of computations can
be found in [14, Theorem 6].

6. Generalized Poincaré series and some of their applications

The additivity of the Euler characteristic is the main property which permits to use
it as a sort of a measure. There are some other invariants of quasi-projective varieties
possessing this property. As an example one can take the Hodge-Deligne polynomial of a
variety. The most general additive invariant is the class of varieties in the corresponding
Grothendieck ring (see below). Therefore it can be considered as a universal (generalized)
Euler characteristic and can be used for integration. This permits to define more fine
invariants of filtrations similar to the Poincaré series.

Let K0(VC) be the Grothendieck ring of quasi-projective varieties. It is generated by
the classes [X] of such varieties subject to the relations:
1) if X1

∼= X2, then [X1] = [X2];
2) if Y is Zariski closed in X, then [X] = [Y ] + [X \ Y ].
The multiplication in K0(VC) is defined by the Cartesian product. The class [X] ∈ K0(VC)
of a variety X can be regarded as the generalized Euler characteristic χg(X) of it. Let L
be the class [A1

C
] of the complex affine line. The class L is not equal to zero in the ring

K0(VC). Moreover, the natural ring homomorphism Z[x] → K0(VC) which sends x to L is
an inclusion. (This follows, e.g., form the fact that the Hodge-Deligne polynomial of P (L),
where P is a polynomial, is P (uv).) Let K0(VC)(L) be the localization of the Grothendieck
ring K0(VC) by the class L. The natural homomorphism Z[x](x) → K0(VC)(L) is an
inclusion as well. A remarkable fact is that the class of the complex line L is a zero divisor
in K0(VC) (see [2]). This fact does not affect the following constructions and definitions.

Let the filtration {Jv} on the ring OV,0 be defined by a system {νi} of order functions,
i = 1, . . . , r. The equations (9) and (11) for the Poincaré series suggest the following
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definition for the generalized semigroup Poincaré series

P̂g(t) =
∑

v∈Zr
≥0

[PFv] · t
v =

∫

PŜ
tν(g)dχg ∈ K0(VC)[[t1, . . . , tr]] . (13)

All connected components of PŜ (i.e. the projectivizations PFv of the fibres Fv ) are
complements to arrangements of projective subspaces in finite dimensional (!) projective
spaces. Because of that all the coefficients of the series P̂g(t) are polynomials in L. There-

fore we can write P̂g(t1, . . . , tr) as a series P̂g(t1, . . . , tr,L) ∈ Z[[t1, . . . , tr,L]] in t1, . . . , tr,

and L. One has P (t1, . . . , tr) = P̂g(t1, . . . , tr, 1).

In a similar way as the one used with the (non generalized) Poincaré series in the
previous section, one gets the following equation:

P̂g(t) =

(
∑
v∈Zr

[P(Jv/Jv+1)] · t
v

)
·

r∏
k=1

(tk − 1)

t1 · . . . · tr − 1
.

One can extend the notion of integration with respect to the generalized Euler char-
acteristic to the infinite dimensional space POV,0 in a way similar to the one for the usual
Euler characteristic.

Definition 3. For a cylindric subset X ⊂ POV,0 (X = π−1
k (Y ), Y ⊂ PJk

V,0 , Y is con-

structible), its generalized Euler characteristic χg(X) is the element [Y ] ·L−dk of the ring
K0(VC)(L), where dk = dim(OV,0/m

k+1
V.0 ).

The generalized Euler characteristic χg(X) is well defined since, if X = π−1
` (Y ′),

Y ′ ⊂ PJ`
V,0 , k ≥ `, then Y is a Zariski locally trivial fibration over Y ′ with the fibre

C
dk−d` and therefore [Y ] = [Y ′] · Ldk−d` .

Definition 4. Let ψ : POV,0 → A be a function with values in an abelian group A
with countably many values. The integral of ψ over the space POV,0 with respect to the
generalized Euler characteristic is

∫

POV,0

ψdχg :=
∑

a∈A,a6=0

χg(ψ
−1(a)) · a,

where χg is the generalized Euler characteristic if this sum makes sense in A⊗ZK0(VC)(L).
If the integral exists (makes sense), the function ψ is said to be integrable.

Definition 5. The generalized Poincaré series of the collection {νi} of order functions is

Pg(t) :=

∫

POV,0

tνdχg .
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The subset of the projectivization POV,0 where t
ν(g) is equal to t v (i.e., where ν(g) = v)

is the projectivization of the space Jv \
r⋃

k=1

Jv+1{k} . Because of that all the coefficients of

the series Pg(t) are polynomials in L
−1. Therefore we shall write Pg(t1, . . . , tr) as a series

Pg(t1, . . . , tr, q) ∈ Z[[t1, . . . , tr, q]] in t1, . . . , tr, and q = L
−1. One has P (t1, . . . , tr) =

Pg(t1, . . . , tr, 1).
The dimension of the quotient of two vector subspaces E′ ⊂ E of OV,0 can be computed

as χ(PE \ PE′). Substituting the usual Euler characteristic χ by the generalized one χg,
one gets the following “motivic version” of the dimension: “ dimg ”(E/E

′) = χg(PE\PE′).
Let codim E = a, codim E′ = a′ (a′ > a). Then χg(PE \PE′) = qa+1 + qa+2 + . . .+ qa

′
=

qa+1 · 1−q a′−a

1−q . Applying this computation to Jv and Jv+1, one gets

χg(PJv \ PJv+1) = q h(v)+1 ·
1− q h(v+1)−h(v)

1− q
· t v .

Therefore, if one defines

Lg(t, q) :=
∑

v∈Zr

q h(v)+1 ·
1− q h(v+1)−h(v)

1− q
· t v ,

one can show that

Pg(t, q) =

Lg(t, q) ·
r∏

k=1

(tk − 1)

t1 · . . . · tr − 1
.

Notice that the generalized Poincaré series and the generalized semigroup Poincaré
series are different. In fact, they belong to different rings, but both specialize to the
Poincaré series P (t).

Let k be a perfect field. The definition of the generalized Poincaré series can be
extended to the category of varieties defined over the field k. In this case one must
consider the Grothendieck ring K0(Vk) of reduced quasi-projective varieties defined over
the field k and its localization K0(Vk)(L) on the class of the affine line, L = [A1

k]. This
construction, in the particular case of curves defined over a finite field Fps = k, allows
to compute some interesting invariants of the local ring by means of the integration with
respect to the generalized Euler characteristic.

Let C be a complete geometrically irreducible, algebraic curve defined over the field
Fps and let O be the local ring of C at a closed point P ∈ C. Let π : C̃ → C be the

normalization, let P1, . . . , Pr be the points on C̃ lying over P and let Oi (1 ≤ i ≤ r) be the
corresponding local rings of C̃ at the points Pi. The integral closure of O in its function
field K is just the intersection O1 ∩ . . . ∩ Or, each Oi is the valuation ring of a valuation
νi over K. Let us denote ρ := [O/m : Fps ] and for i = 1, . . . ,m, di := [Oi/mi : Fps].

The valuations ν1, . . . , νr define, as usual, the filtration

Jv := {g ∈ O|νi(g) ≥ vi, 1 ≤ i ≤ r} for v ∈ Z
r



On Poincaré Series of Filtrations 137

and so one has the corresponding generalized Poincaré series:

Pg(t,L) =

∫

PO
tν(g)dχg ∈ K0(VFps

)(L)[[t1, . . . , tr]] . (14)

Stöhr in [18] introduced the zeta function now called the Stöhr one:

ζ(O, z) :=
∑

a⊇O

] (a/O)−z ,

where the summation runs through all fractional ideals containing O, z ∈ C with Re(z) >
0. Putting t = q−z and writing Z(O, t) instead of ζ(O, z), the Stöhr zeta function splits
into a finite sum of partial zeta functions Z(O, t) =

∑
(b) Z(O, b, t), where b is a fractional

O-ideal satisfyingO·b = O. The summation runs over a complete system of representatives
of the ideal class semigroup of O. For each partial zeta function one has:

Z(O, b, t) =
∑

a⊇O , a∼b

tdimk(a/O). (15)

The notation a ∼ b means that a = a−1
b for a non-zero divisor a ∈ K.

In [12] it was shown that the partial zeta functions Z(O, b, t) can be computed in terms
of integrals with respect to the Euler characteristic:

Z(O, b, t) =
(ps − 1)(ps)ρtdeg(b)

((ps)ρ − 1)(Ub : UO)

∫

Pb

(pst)ν(g)·ddχ.

Here ν(g) · d := d1ν1(g)+ · · ·+ drνr(g), (Ub : UO) is the index of the subgroup UO of units
of O over the units of the fractional ideal b, and the degree deg(b) of b is the function
such that deg(O) = 0 and deg(a/b) = deg(a) − deg(b). Finally, χ(X) = #χg(X) is just
the cardinality of the generalized Euler characteristic.

For b = O one has

Z(O,O, t) =

∞∑

i=0

#{principal ideals of O of codimension i} · ti .

In [12], it was proved that

Z(O,O, t) =
(ps)ρ(ps − 1)

(ps)ρ − 1
Pg((p

st)d1 , . . . , (pst)dr ; ps) . (16)

Notice that the right hand side of the equation (16) has a simple expression in the totally
rational case, i.e. when di = 1 for i = 1, . . . , r (this implies also that ρ = 1):

Z(O,O, t) = psPg(p
st, . . . , pst; ps) .

Also in this context, Moyano and Zúñiga-Galindo ([17]) showed the rationality of the
generalized Poincaré series Pg(t,L) and its relation with a zeta function associated to the
effective Cartier divisors on the curve C.
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One can say that the generalized Poincaré series is (in the sense of M.Khovanov) a
“categorification” of the usual Poincaré series. This means that the generalized Poincaré
series is a series in one more variable q = L

−1 and its Euler characteristic (obtained
by the substitution q = 1) coincides with the usual Poincaré series. There are several
“categorifications” of the Alexander polynomial of a knot or a link. Thus one may hope
that the generalized Poincaré series can coincide with (or be related to) one of these
“categorifications”. One of them called the Heegaard-Floer link homology was constructed
by P.Ozsváth and Z.Szabó. In [13] (Theorem 1.4.1 and Corollary 1.5.3) it was shown that
(up to a simple change of variables) the generalized Poincaré series of an algebraic link
coincides with the Poincaré polynomial (the generating series) of the Heegaard-Floer link
homology of it.
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[18] K.-O. Stöhr. Local and global zeta-functions of singular algebraic curves, J. Number
Theory, 71(2), 172–202, 1998.

[19] A.N. Varchenko. Theorems on topological equisingularity of families of algebraic vari-
eties and of families of polynomial maps, Izvestiya: Mathematics, 36(5), 957–1019,
1972.

[20] O.Ya. Viro. Some integral calculus based on Euler characteristic, Topology and ge-
ometry – Rohlin Seminar, Lecture Notes in Math., 1346, Springer, Berlin, 127–138,
1988.

A. Campillo and F. Delgado
(IMUVA) Instituto de Investigación en Matemáticas,
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