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Fixed Point Theorem in Partially Ordered Metric Spaces
for Generalized Contraction Mappings

S. Chandok *, M.S. Khan, T.D. Narang

Abstract. In this paper, we prove some fixed point results in the setting of two metric spaces
endowed with a partial order satisfying a generalized contractive condition. The proved results ge-
neralize and extend some known results in the literature. As application, we establish an existence
result for a nonlinear first order differential equation.
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1. Introduction and Preliminaries

The Banach Contraction Mapping Principle is one of the pivotal results of analysis.
It is a very popular tool for solving existence and uniqueness problems in different fields
of mathematics. Due to its importance and applications potential, the Banach Contrac-
tion Mapping Principle has been investigated heavily by many authors. Consequently, a
number of generalizations of this celebrated principle have appeared in the literature (see
[1,2,3,4,5,7,6,9, 8, 10, 11, 12] and references cited therein).

Ran and Reurings [11] extended the Banach contraction principle in partially ordered
sets with some applications to linear and nonlinear matrix equations. While Nieto and
Rodfiguez-Lopez [10] extended the result of Ran and Reurings and applied their main
theorems to obtain a unique solution for a first order ordinary differential equation with
periodic boundary conditions. Bhaskar and Lakshmikantham [2] introduced the concept
of mixed monotone mappings and obtained some coupled fixed point results. Also, they
applied their results on a first order differential equation with periodic boundary condi-
tions. Recently, many researchers have obtained fixed point, common fixed point results
in metric spaces endowed with a partial order. The purpose of this paper is to establish
some fixed point results in the setting of two metric spaces endowed with a partial order
satisfying a generalized contractive condition. Also, an application to the study of the
existence of solution to a nonlinear first order differential equation has been given.

In [12], Singh proved the following fixed point theorem.

*Corresponding author.

http://www.azjm.org 89 © 2010 AZJM All rights reserved.



90 S. Chandok, M.S. Khan, T.D. Narang

Theorem 1. Let X be a metric space with metrics d and § such that d(xz,y) < 0(x,y) for
each pair v,y € X. If X is complete with respect to d, T : X — X is a function in (X, d)
and T satisfies the following contractive condition:

6(Tz, Ty) < a(b(z,Ty)+0(y,Tx)) (1)
for all z,y € X, and for some « € (0, %), then T has a unique fixed point in X.

The aim of this paper is to give a version of Theorem 1 in a metric space endowed
with a partial order.

2. Main Results

Definition 1. Suppose (X, <) is a partially ordered set and T : X — X. T is said to be
monotone nondecreasing if for all x,y € X,

x <y implies Tx < Ty. (2)

Theorem 2. Let (X, <) be a partially ordered set and suppose that there exist metrics d
and 6 on X such that (X,d) is a complete metric space and d(z,y) < d(z,y). Suppose
that T is a continuous self-mapping on X, T is monotone nondecreasing mapping and

0Tz, Ty) < «a(d(z,Tz)+0(y,Ty)) (3)

for allx,y € X, x >y and for some « € (0, %)
If there exists xg € X with xo < Txg, then T has a fized point.

Proof. If Txg = xg, then we have the result. Suppose that x¢g < T'xzg. Since T is a
monotone nondecreasing mapping, we obtain by induction that

x0<Tx0§T2x0§...ST”xogT"ong... (4)

By induction, we can construct a sequence {x,} in X such that z,41 = Tz, for every
n > 0.
Since T' is monotone nondecreasing mapping, we obtain

2oL 21 S22 STy STl S

If there exists n > 1 such that x,+1 = x,, then from z,,1 = Tz, = x, it follows that
Zp, is a fixed point and the proof is finished. Suppose that z, 1 # x, for all n > 1.
Since x,, > xp_1, for all n > 1, from (3) we have

6<xn+27$n+1) = 5(T$n+1aTxn)
— « (5(xn+17 T‘TTL+1) + 5(xn7 Twn))
= a(6(@nt1, Tnt2) + 0(Tn, Tny1)) (5)

A
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which implies that

o
5(xn+27 xn—i—l) < 1 a(s(xn—i-la wn) (6)
Using mathematical induction, we have
o n+1
Somzan) < (125) e @

Put £ = 2= < 1. Now we shall prove that {,} is a Cauchy sequence. For m > n, we
have

5($ma mn) < 5($m7 xmfl) + 5($m71a :L‘mfZ) + ..+ 6(mn+1, xn)
< (KN HETTE 4 L+ KT 6z, o)
En
< (1—]{7> 5<x17$0)a (8)

which implies that (2, z,) — 0, as m,n — oco. Thus {z,} is a Cauchy sequence with
respect to §, which further implies that it is a Cauchy sequence with respect to d for
d(z,y) < d(x,y), for all z,y € X. Since (X,d) is a complete metric space, there exists
u € X such that limx,, = u.

By the continuity of T', we have Tu = T (limy,—y 00 ) = limy, 00 Ty, = limy 00 Tpy1 =
u. Hence u is a fixed point of T'.«

In what follows, we prove that Theorem 2 is still valid for T', not necessarily continuous,
assuming the following hypothesis in X:
If {x,} is a non-decreasing sequence in X such that z,, — z, then z,, < z.

Theorem 3. Let (X, <) be a partially ordered set and suppose that there exist metrics d
and 0 on X and d(z,y) < é(x,y). Suppose that T is a self-mapping on X, T is a monotone
nondecreasing mapping and

6(Tx,Ty) < a(é(z,Tx)+ 6y, Ty)) 9)

forallz,y € X, z >y and for some a € (0, 3).
Assume that if {x,,} is a non-decreasing sequence in X such that x, — z, then x, < z.
If there exists xg € X with xg < Txg, then T has a fixed point.

Proof. Following the proof of Theorem 2, we have §(T"x, T"+1z) < <1%>n d(z1,x0).

«
Thus for 0 < o < &, §(T"z, T z) — 0.
Since {x,} is a non-decreasing sequence in X such that x,, — u, then x,, < u for all
n € N.
Since T is a monotone nondecreasing mapping with Tz, < Tu, for all n € N or,
equivalently, z,4+1 < Tu, for all n € N. Consider

(Tu,xpt1) = 6(Tu,Txy)
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< a(d(u,Tu) + 0(xp, Txy,))
= a(d(u,Tu) + 6(xn, Tp+1)) -

Letting n — oo, we have 6(T'u,u) < ad(Tu,u), which implies that Tu = u. Hence u is a
fixed point of T'.«

Now, we shall prove the uniqueness of the fixed point.

Theorem 4. In addition to the hypotheses of Theorem 2 (or Theorem 3), suppose that
for every x,y € X, there exists z € X which is comparable to x and y. Then T has a
unique fized point.

Proof. From Theorem 2 (or Theorem 3), the set of fixed points of T is non-empty.
Suppose that z,y € X are two fixed points of T. We distinguish two cases:
Case 1. If x and y are comparable and = # y, then using (3), we have

0(xz,y) = o(Tx,Ty)
< a(d(z,Tx) 4+ 6(y, Ty)),

which implies that d(x,y) = 0. Hence x = y.

Case 2. If z is not comparable to y, there exists z € X that is comparable to x
and y. Monotonicity implies that that 7"z is comparable to T"x = x and Ty = y for
n=20,1,2,.... If there exists ng > 1 such that 7™z = x, then as z is a fixed point, the
sequence {T"z : n > ng} is constant, and, consequently, lim,.oT"z = x. On the other
hand, if T"z # x for n > 1, using the contractive condition, we obtain, for n > 2,

(T"z,x) = o(T"z,T"x)
< a(0(T" e, T2) + 6(T™ 12, T™2))
= afd(z,z) +0(T" 12, T"2))
< ald(e,T") + (e, T 2)),

which implies that §(T"z,z) < 2-0(T" 'z, ). Using mathematical induction, we have

n
0Tz, x) < (ﬁ) 6(z,), for n > 2, and as 1% < 1, we have lim,, o T"z = .

Using a similar argument, we can prove that lim,,_,., 7"z = y. Now, the uniqueness
of the limit implies z = y. Hence T has a unique fixed point.«

Corollary 1. Let (X, <) be a partially ordered set and suppose that there exist metrics
d and § on X such that (X,d) is a complete metric space and d(z,y) < 6(z,y). Suppose
that the mapping T : X — X satisfies

5(T, Ty) < o (8(z, Tx) + (3, Ty))
forall z,y € X, x >y and for some a € (0, ) Suppose that
Tx <T(Tx), foral xzecX.

Also suppose that either
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(a) if {xn} C X is a nondecreasing sequence with x, — z, then x, = z for every n; or

(b) T is continuous.

Then T has a fixed point.

2.1. Application to nonlinear first order ordinary differential equation

Consider the nonlinear differential equation

2t = f(t,z(t), tel,
{x(to) = o, (10)

where tg € R, [ = [tg,to+a],a>0,and f: I xR — R.
Let X = C(I,R) denote the space of all continuous R-valued functions on I. We endow
this space with the metrics d and ¢ given by

1
d(u,v) = istlel? lu(t) —ov(t)|, forall w,veX.

d(u,v) =sup |u(t) —v(t)|, forall wu,ve X.
tel

It is well known that (X, d) is a complete metric space. We define an order relation < on
X by
u,v € X, wu<v<=u(t) <v(t), foralltel.

We consider the following assumptions:
(H1) f:I xR — R is continuous;
(H2) for all t € I, f(t,-) : R — R is nondecreasing;

(H3) we have
ft,z) < f(t, f(t,z)), forall tel, zeR;

(H4) for all t € I, for all u € C(I,R),
t
ftut) <zo+ [ f(r,2(1)) dr;
to
(H5) there exists k € [0,1/2) such that for all u,v € C(I,R) with u < v, we have

t
/ (s 0(s)) — f(s,u(s)] ds <

to

u(t) —xo — f(s,u(s))ds

to

K ¥

forallt € I.

v(t) —xop — t f(s,v(s))ds

)
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We have the following result.

Theorem 5. Suppose that (H1)-(H5) hold. Then (10) has at least one solution x* €
C(I,R).

Proof. Consider the mapping T': C(I,R) — C(I,R) defined by
t
Tu(t)=x0+ [ f(s,u(s))ds, tel,
to

for all u € C(I,R). Clearly, 2* € C(I,R) is a solution of (10) if and only if z* is a fixed
point of T
Let z,y € C(I,R) be such that < y. From (H5), we have

/ [F(s,9(s)) — F(s,2(s))] ds

to

< k( [y(®) =20 = f{, Fls,y(s)) ds| + [o(t) =20 = [} f(s,(s)) dsD

< k(ly(t) — Ty@)| + |(t) — Tz(t)])
< k(0(z,Tz) + (y, Ty)).

On the other hand, we have

Tx(t) = Ty(t)| = /[f(8733(8))—f(87y(8))] ds

to

< t [f(s,2(s)) = f(s,y(s))| ds

(fom (12) = [ [F(s.0(s)) = F(s,0(5)] .

to

Then we have
|Tx(t) — Ty(t)| < k(0(z,Tx) +6(y, Ty)), forall tel.
This implies that
5(T, Ty) < k(8(, ) + 6(y, Ty)).
Let 2z € C(I,R). For all t € I, we have
t
Tz(t) = xo+ | f(s,z(s)) ds
to

(from (H3)) < z¢+ t f(s, f(s,2(s))) ds
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(from (H2) and (H4))

IN

t s
0 —I—/ f (s,:):o + f(r,z(1)) dT) ds
to to

t
= a0+ | f(s,Tx(s)) ds

= T(Tx(to)).

Thus we have

Tz <T(Txz), forall zeC(I,R).

Also, it is proved in [10] that if {z,,} C C(I,R) is a nondecreasing sequence with x, — z,
then z,, < z for every n.

Now, applying Corollary 1, we obtain that there exists z* € C(I,R), a fixed point of

T <

1]

2]
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