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Darboux Slant Ruled Surfaces

M. Önder∗, O. Kaya

Abstract. In this study, we introduce Darboux slant ruled surface in the Euclidean 3-space E3

which is defined by the property that the Darboux vector ~W of orthonormal frame of a ruled

surface satisfies the condition
〈
~W, ~u

〉
= constant 6= 0 where ~u is a fixed non-zero direction in the

space. We obtain characterizations for Darboux slant ruled surfaces according to conical curvature
κ and give the relations between a Darboux slant ruled surface and other slant ruled surfaces.
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1. Introduction

Special curves and special surfaces defined by some properties according to their cur-
vatures are the most fascinating problems of the differential geometry. The well-known
types of special curves are helices, involute-evolute curves, Bertrand curves and slant he-
lices. Helix curve is defined by the property that the tangent line of the curve makes a
constant angle with a fixed straight line (the axis of the general helix) [2]. The classical
result for a helix was stated by Lancret in 1802 and first proved by B. de Saint Venant in
1845: A necessary and sufficient condition that a curve to be a general helix is that the
ratio of the first curvature to the second curvature be constant, i.e., κ/τ is constant along
the curve, where κ and τ denote the first and second curvatures of the curve, respectively
[12].

Recently, Izumiya and Takeuchi have defined a new special curve called slant helix for
which the principal normal lines of the curve make a constant angle with a fixed non-zero
constant direction and they have given a characterization for slant helix in the Euclidean
3-space E3 [4]. The spherical images of the Frenet vectors of a slant helix have been
studied by Kula and Yaylı and they have obtained that the spherical images of a slant
helix are spherical helices [6]. Later, Kula et al have obtained some new characterizations
for slant helices in E3 [7]. Monterde has shown that for a curve with constant curvature
and non-constant torsion, the principal normal vector makes a constant angle with a fixed
constant direction, i.e., the curve is a slant helix [8]. Ali has considered the position

∗Corresponding author.

http://www.azjm.org 64 c© 2010 AZJM All rights reserved.



65

vectors of slant helices and obtained some new properties of these curves [1]. Analogue
to the definition of slant helix, Önder et al have defined B2-slant helix in the Euclidean
4-space E4 by the property that the second binormal vector B2 of a space curve makes a
constant angle with a fixed direction and they have given some characterizations for B2-
slant helix in the Euclidean 4-space E4 [11]. Then, Gök, Camcı and Hacısalihoǧlu have
considered the notion of Vn-slant helix in the Euclidean n-space En [3]. Later, Zıplar,
Şenol and Yaylı have defined a new type of helices called Darboux helices and they have
given some characterizations for these curves [13].

Moreover, Önder has considered the notion of “slant helix” for ruled surfaces and
defined slant ruled surfaces in the Euclidean 3-space E3 by the property that the vectors
of orthonormal frame of a ruled surface make constant angles with fixed non-zero directions
[9]. He has shown that the striction curves of developable slant ruled surfaces are helices
or slant helices.

In this work, we introduce Darboux slant ruled surfaces in E3. We give characteriza-
tions of these special surfaces and obtain the relations between slant ruled surfaces and
Darboux slant ruled surfaces.

2. Ruled Surfaces in the Euclidean 3-space E3

In this section, we give a brief summary of ruled surfaces in E3 presented in [5].

A ruled surface S is a special surface generated by a continuous movement of a line
along a curve and has the parametrization

~r(u, v) = ~f(u) + v ~q(u), (1)

where ~f = ~f(u) is a regular curve in E3 defined on an open interval I ⊂ R and ~q = ~q(u) is
a unit direction vector of an oriented line in E3. The curve ~f = ~f(u) is called base curve
or generating curve of the surface and various positions of generating lines ~q = ~q(u) are
called rulings. In particular, if the direction of ~q is constant, then the ruled surface is said
to be cylindrical, and non-cylindrical otherwise.

Let ~m be the unit normal vector of the ruled surface S. Then if v decreases infinitely
along a ruling u = u1, the unit normal ~m approaches a limiting direction. This direction
is called asymptotic normal (central tangent) direction and is defined by

~a = lim
v→±∞

~m(u1, v) =
~q × ~̇q∥∥∥~̇q∥∥∥ , (2)

where ~̇q = d~q
du . The point at which the unit normal of S is perpendicular to ~a is called

striction point (or central point) C and the set of striction points of all rulings is called
striction curve of surface. The parametrization of striction curve ~c = ~c(u) on a ruled
surface is given by
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~c(u) = ~f −

〈
~̇q, ~̇f
〉

〈
~̇q, ~̇q
〉 ~q. (3)

A non-cylindrical ruled surface always has a parametrization of the form

~r(s, v) = ~c(s) + v ~q(s),

where ‖~q(s)‖ = 1,
〈
d~c
ds ,

d~q
ds

〉
= 0. Furthermore, the striction curve does not depend on the

choice of the base curve.
The vector ~h defined by ~h = ~a×~q is called central normal vector. Then the orthonormal

system
{
C; ~q,~h,~a

}
is called Frenet frame of the ruled surface S where C is the central point

and ~q, ~h, ~a are unit vectors of ruling, central normal and central tangent, respectively.
The set of all bound vectors ~q(s) at origin O constitutes a cone which is called directing

cone of the ruled surface S. The end points of unit vectors ~q(s) drive a spherical curve k1
on the unit sphere S2 and this curve is called spherical image of ruled surface S, whose
arc length parameter is denoted by s1.

For the Frenet formulae of ruled surface S and of its directing cone with respect to the
arc length parameter s1 we have d~q/ds1

d~h/ds1
d~a/ds1

 =

 0 1 0
−1 0 κ
0 −κ 0

 ~q
~h
~a

 , (4)

where κ is called conical curvature of directing cone. The Frenet formulae can be inter-
preted kinematically as follows: If ~q traverses the directing cone in such a way that s1 is

the time parameter, then the moving frame
{
C; ~q,~h,~a

}
moves in accordance with (4).

This motion contains, apart from an instantaneous translation, instantaneous rotation
with angular velocity vector given by the Darboux vector

~W = κ~q + ~a. (5)

The direction of the Darboux vector is that of instantaneous axis of rotation, and its

length
∥∥∥ ~W∥∥∥ =

√
1 + κ2 is the scalar angular velocity. Then, Frenet formulae (4) can be

given as follows:

~q ′ = ~W × ~q, ~h′ = ~W × ~h, ~a ′ = ~W × ~a. (6)

Definition 1. ([9]) Let S be a regular ruled surface in E3 given by the parametrization

~r(s, v) = ~c(s) + v ~q(s), ‖~q(s)‖ = 1,

where ~c(s) is striction curve of S and s is arc length parameter of ~c(s). Let the Frenet

frame of S be
{
~q,~h,~a

}
. Then S is called a q-slant (h-slant or a-slant, respectively) ruled
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surface if the ruling (the vector ~h or the vector ~a, respectively) makes a constant angle θ
with a fixed non-zero unit direction ~u in the space, i.e.,

〈~q, ~u〉 = cos θ = constant; θ 6= π

2

(
〈
~h, ~u

〉
= cos θ = constant; θ 6= π

2 or 〈~a, ~u〉 = cos θ = constant; θ 6= π
2 , respectively).

Theorem 1. ([10]) Let S be a regular ruled surface in E3 with Frenet frame
{
~q,~h,~a

}
and conical curvature κ 6= 0. Then S is a q-slant ruled surface if and only if the function
κ is constant.

In this paper, we will study the Darboux slant ruled surfaces by considering Eq. (5)
and give the relationships between slant ruled surfaces and Darboux slant ruled surfaces.
First we prove the following theorem for h-slant ruled surfaces.

Theorem 2. Let S be a regular ruled surface in E3 with Frenet frame
{
~q,~h,~a

}
and

conical curvature κ 6= 0. Then S is an h-slant ruled surface if and only if the function

κ′

(1 + κ2)3/2
(7)

is a non-zero constant.

Proof. Assume that S is an h-slant ruled surface in E3. So, for a non-zero constant
c ∈ R we can write 〈

~h, ~u
〉

= c,

where ~u is a non-zero fixed direction. Then, for the vector ~u we have

~u = b1(s1)~q(s1) + c~h(s1) + b2(s1)~a(s1), (8)

where b1 = b1(s1) and b2 = b2(s1) are smooth functions of arc length parameter s1. On

the other hand, since ~u is a fixed direction, that is ~u′ = 0 and Frenet frame
{
~q,~h,~a

}
is

linearly independent, differentiation of (8) gives

b′1 − c = 0, b1 − κb2 = 0, b′2 + cκ = 0. (9)

From the second equation of system (9) we have

b1 = κb2. (10)

Moreover, since ~u is a fixed direction we have ‖~u‖ is constant. Then it follows

b21 + c2 + b22 = constant. (11)
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Substituting (10) in (11) gives

b22
(
1 + κ2

)
= n2 = constant (n ∈ R). (12)

If n = 0, then b2 = 0 and from (9) we have b1 = 0, c = 0. This means that ~u = 0 which
is a contradiction. So, n 6= 0 and from (12) it is obtained that

b2 = ± n√
1 + κ2

. (13)

Considering the third equation of the system (9), from (13) we have

d

ds1

[
± n√

1 + κ2

]
= −cκ. (14)

For a non-constant m ∈ R, from (14) the following desired equality is obtained:

κ′

(1 + κ2)3/2
=
c

n
= m = constant 6= 0.

Conversely, assume that the function in (7) is constant. Then, for a non-constant
m ∈ R, we have

κ′

(1 + κ2)3/2
= m = constant 6= 0.

We define the function

~u =
κ√

1 + κ2
~q +m~h+

1√
1 + κ2

~a. (15)

From (15) and Frenet formulae (4), we have ~u′ = 0, i.e., ~u is a constant vector. On the
other hand, 〈

~h, ~u
〉

= m = constant 6= 0,

which gives that S is an h-slant ruled surface in E3.J

3. Darboux Slant Ruled Surfaces in the Euclidean 3-space E3

In this section, we consider the notion of “slant” for Darboux vector ~W = κ~q + ~a and
give some theorems for Darboux slant ruled surfaces in the Euclidean 3-space. First, we
give the following definition.

Definition 2. Let S be a regular ruled surface in E3 given by the parametrization

~r(s, v) = ~c(s) + v ~q(s), ‖~q(s)‖ = 1, (16)
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where ~c(s) is the striction curve of S and s is the arc length parameter of ~c(s). Let

the orthonormal frame
{
~q,~h,~a

}
and the function κ = κ(s) denote the Frenet frame and

conical curvature of S, respectively. Then, S is called a Darboux slant ruled surface if its
Darboux vector ~W and a non-zero fixed direction ~u satisfy〈

~W, ~u
〉

= constant 6= 0.

Then, we give the following characterizations for Darboux slant ruled surfaces. When-
ever we talk about S, we will mean that the surface has the parametrization and Frenet
elements as given in Definition 2.

Theorem 3. Let S be a ruled surface in E3 with non-zero conical curvature κ. If S is a
Darboux slant ruled surface, then the conical curvature κ is constant.

Proof. Let S be a Darboux slant ruled surface. Then for a non-zero fixed direction ~u,
we have 〈

~W, ~u
〉

= constant. (17)

Taking the derivative of (17) gives 〈
~W ′, ~u

〉
= 0. (18)

From (18) and Frenet formulae (4), we can write

κ′ 〈~q, ~u〉 = 0. (19)

From (19) we get two possibilities as follows:{
κ = constant,
〈~q, ~u〉 = 0.

(20)

If 〈~q, ~u〉 = 0, then ~u is perpendicular to the vector ~q and can be written as

~u = a1~h+ a2~a, (21)

where a1, a2 are smooth functions of s1. By taking the derivative of (21) and using the
Frenet formulae given in (4) we have

−a1~q + (a′1 − κa2)~h+ (a′2 + κa1)~a = 0. (22)

Considering that the Frenet frame
{
~q,~h,~a

}
is linearly independent, from (22) we obtain

the following system: 
a1 = 0,
a′1 − κa2 = 0,
a′2 + κa1 = 0.

(23)
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Since κ 6= 0, from (23) we get that a1 = a2 = 0 which gives us that ~u = 0 which is a
contradiction, that is 〈~q, ~u〉 6= 0. Therefore κ = constant.J

The converse of Theorem 3 is satisfied in the following special case:

Corollary 1. Let S be a ruled surface in E3 with constant curvature κ 6= 0. Then S
is a Darboux slant ruled surface if and only if the angle φ between the vectors ~W, ~u is
constant.

Proof. Let S be a Darboux slant ruled surface. Then we have that
〈
~W, ~u

〉
= x =

constant 6= 0. If the angle between the vectors ~W, ~u is φ, then we can write∥∥∥ ~W∥∥∥ ‖~u‖ cosφ = x.

Since ‖~u‖ and κ are non-zero constants, the last equality gives us cosφ = x
‖~u‖
√
1+κ2

is a

non-zero constant. It means that φ is a constant.
Conversely, assume that the angle φ between the vectors ~W, ~u is a constant. Then we

have

cosφ =

〈
~W, ~u

〉
c
√

1 + κ2
= constant,

where ‖~u‖ = c is a non-zero constant. From last equality we have〈
~W, ~u

〉
= y
√

1 + κ2,

where y = c cosφ is a non-zero constant. Since κ = constant, we have
〈
~W, ~u

〉
= constant,

i.e., S is a Darboux slant ruled surface.J

Moreover, from Theorem 3 we have the following corollaries:

Corollary 2. Let S be a ruled surface in E3 with conical curvature κ 6= 0. If S is a
Darboux slant ruled surface, then det( ~W, ~W ′, ~W ′′) = 0 holds.

Proof. From Darboux vector and its derivatives we have

~W = κ~q + ~a,
~W ′ = κ′~q,
~W ′′ = κ′′~q + κ′~h.

Then we obtain that

det( ~W, ~W ′, ~W ′′) =
(
κ′
)2
.

If S is a Darboux slant ruled surface, from Theorem 3 we have that κ is a non-zero constant
which gives that det( ~W, ~W ′, ~W ′′) = 0.J
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Corollary 3. Every Darboux slant ruled surface S with conical curvature κ 6= 0 is also
a q-slant ruled surface.

Proof. The proof is clear from Theorem 1 and Theorem 3.J

Theorem 4. An h-slant ruled surface S with κ 6= 0 cannot be a Darboux slant ruled
surface with the same axis.

Proof. Let S be an h-slant ruled surface with axis ~u . Then we have〈
~h, ~u

〉
= constant 6= 0. (24)

From Theorem 2 we know that the axis of h-slant ruled surface is given by

~u =
κ√

1 + κ2
~q +m~h+

1√
1 + κ2

~a, (25)

where m = κ′

(1+κ2)3/2
is a non-zero constant. By using (25) and considering Darboux vector

~W = κ~q + ~a we can write

~u =
~W∥∥∥ ~W∥∥∥ +m~h. (26)

Then, from (26) we obtain 〈
~W, ~u

〉
=
∥∥∥ ~W∥∥∥ =

√
1 + κ2. (27)

From (27) it is clear that S is a Darboux slant ruled surface, i.e.,
〈
~W, ~u

〉
= constant if

and only if κ = constant. But if κ = constant, from (25) we have that
〈
~h, ~u

〉
= 0. On the

other hand, from Definition 1 we know that the angle θ between the vectors ~h, ~u satisfies
θ 6= π

2 . So, the result is a contradiction. Then, an h-slant ruled surface S with κ 6= 0
cannot be a Darboux slant ruled surface with the same axis.J
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