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Abstract. In this paper, we introduce conformal Kenmotsu manifolds which are not Kenmotsu.
Some results on such manifolds and their associated submanifolds are provided.
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1. Introduction

Let (M?"J,g) be a Hermitian manifold of complex dimension n, where J denotes its
complex structure and g is its Hermitian metric. Then (M?",.J, g) is a locally conformal
Kiehler manifold if there is an open cover {U;}icr of M*" and a family {fi}ics of C*
functions f; : U; — R such that each local metric g; = exp(—fi)gy, is Kéehlerian.
Here gy, = ;g where 4 : U — M?" is the inclusion. Also (M?",J,g) is globally
conformal Kiehler if there is a C* function f : M?" — R such that the metric exp(f)g
is Kéehlerian [5]. The first study on locally conformal K&ehler manifolds was done by
Libermann in 1955 [8]. Visman [10], put down some geometrical conditions for locally
conformal Kéehler manifold and in 1982 Tricerri mentioned different examples of locally
conformal Kéehler manifold [9]. In 2001, Banaru [2] succeeded to classify the sixteen
classes of almost Hermitian manifolds by using the two tensors of Kirichenko, which are
called Kirichenko tensors. Abood studied the properties of these tensors [1]. The locally
conformal Kéaehler manifold is one of the sixteen classes of almost Hermitian manifolds.
In 1972, K. Kenmotsu introduced a class of contact metric manifolds, called Kenmotsu
manifolds, which are not Sasakian [7]. In this paper we get the idea of constructing
conformal Kéaehler manifolds and introduce conformal Kenmotsu manifolds which are not
Kenmotsu. There are a few differences between the geometry of invariant (anti-invariant)
submanifolds of a Kenmotsu manifold and a conformal Kenmotsu manifold. For example,
we show that any invariant submanifold M of a Kenmotsu manifold M is minimal, but
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if M is a conformal Kenmotsu manifold, then M is minimal if and only if the Lee vector
field of M is tangent to M. Moreover, it is proved in [6] that if M is an anti-invariant
submanifold of a Kenmotsu manifold, then M has the flat normal curvature tensor if and
only if M is flat, but in this paper we show that if M is an anti-invariant submanifold of a
conformal Kenmotsu manifold with flat normal curvature tensor then M is not flat. The
present paper is organized as follows:

In Section 2 we recall some definitions on almost contact metric manifolds. We introduce
conformal Kenmotsu manifolds in Section 3 and establish a relation between the curvature
tensor on a conformal Kenmotsu manifold and a Kenmotsu manifold. According to this
relation, we give the Gauss and Ricci equations between a conformal Kenmotsu manifold
and its submanifolds. In Sections 4 and 5, we study invariant submanifolds and anti-
invariant submanifolds of a conformal Kenmotsu manifold and prove some theorems about
the mean curvature vector field, the connection of the normal bundle and the curvature
tensor of the submanifolds.

2. Preliminaries

A 2n+1-dimensional differentiable manifold M is said to be an almost contact metric
manifold if it admits an almost contact metric structure (p,€,7,§) where @ is a tensor
field of type (1,1), € is a vector field, 7 is a 1-form and § is the Riemannian metric on M
satisfying

' =—Id+7i®E, (&) =1, ¢ =0, fop = 0,
33X, Y) = §(X,Y) — 5(X)i(Y), i(X) = §(X,§),

for all vector fields X,Y on M. )
An almost contact metric manifold (M?2"*1 3 &, 7, §) is said to be a Kenmotsu manifold
[7] if the relation

(Vx@)Y = —§(X,¢Y){ — ii(Y)$X, (1)

holds on M, where V denotes the Riemannian connection of §. From the above equation,
for a Kenmotsu manifold we also have

Vxé =X —ij(X)E (2)

Assume M is a submanifold of a Kenmotsu manifold M. Let g and V be the induced
metric and Riemannian connections of M, respectively. Then the Gauss and Weingarten
formulas of M are given, respectively, by

VxY =VxY +h(X,Y), VxN = —AyX + V§N,

for all vector fields X,Y on M , where V< is the normal connection and A is the shape
operator of M with respect to the unit normal vector field N. Let R is the curvature tensor
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of M, the Gauss and Ricci equations of M are given, respectively, by

JRXYV)VZW) = §RX,Y)ZW)—=gh(X,W),hY, Z))
) + g(h(X, W), (Y, 2)),
G(R(X,Y)N1,Na) = G(RH(X,Y)N1,Na) — §([A1, A X, Y),

for all X,Y,Z,W € TM and Ny, No € TM*. )
A submanifold M™ of a Kenmotsu manifold (M?"*!, 5, £,7, §) is called an invariant sub-
manifold if ¢T,M C T,,M for any p € M.

Theorem 1. Let M™ be an invariant submanifold of a Kenmotsu manifold M tangent to
&, Then M is minimal.
Proof. From the Gauss formula and (1) we have

WX, 8Y) = @h(X,Y) - (Vx@)Y — §(X, gY)E - il(Y)@X,
for all X,Y on M. Since M is invariant, taking the tangent and normal parts, we have
hX,pY) = ¢h(X,Y). (3)

Let {Eq, pEq, & a1, mTfl} be an orthonormal basis on M and suppose H is the mean
curvature vector field of M. From the Gauss formula and (2) it follows that h(, ) = 0.
Hence, using (3) we have

m 1

{E L (W(Ea, Eo) + M@ Ea, pEa)) + h(£,£)} = 0. «

3. Conformal Kenmotsu Manifolds

A smooth manifold M?"*! with almost contact metric structure (p,7, ¢, g) is called a
conformal Kenmotsu manifold if there is a positive smooth function f : M?"*! — R so
that

G=crp(f)g,  E=ecap(—f)7¢,  d=eap(f)in,  F=g,

is a Kenmotsu structure on M.

Let M is a conformal Kenmotsu manifold. Suppose V and V denote the Riemannian
connections M with respect to metrics ¢ and g, respectively. Using the Koszul formula,
we obtain the following relation between the connections V and V

VxY = VxY + %{w(X)Y +w(V)X — g(X,Y)wb}, (4)
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such that w(X) = X(f) and w = gradf is vector field metrically equivalent to 1-form
w, that is, g(w!, X) = w(X), that is called the Lee vector field of a conformal Ken-
motsu manifold M. Let R and R denote the curvature tensor on (M?n+t @,ﬁ,g, g) and
(M?+1 .0, €, g), respectively. Then the relation between R and R is given by

exp(~NARX.Y)ZW) = g(RXY)ZW)
S (BIX, 2)g(V, W) — B(Y, Z)g(X, W)
BY.W)g(X, 2) ~ BX,W)g(Y. 2)}

LI P a(X, 2)a(Y. W) — g(Y. Z)a(X. W)}, (5)

+ o+ o+

for all vector fields X,Y,Z, W on M, where B := Vw — %w ® w. Furthermore, by the
relations (1), (2) and (4) we get

(Vxe)Y = (exp(f))2{-g(X,pY)E —n(Y)pX}
V)X (V)X +g(X, Vet — (X, oY), (6)

ViE = (e(f)HX - n(X)€} — Sul€)X —n(X)ef), (7

for all vector fields X,Y on M. Assume M is a submanifold of a conformal Kenmotsu
manifold M. Let V and R are the Riemannian connection and curvature tensor on M ,
respectively, and ¢ is an induced metric on M. Also let N is an unit vector field normal
to M. We put

PX = tan(pX), FX =nor(pX),
tN = tan(pN), fN =nor(pN),

for any X € TM and N € TM~+. Then by the Gauss formula and (6) we obtain the
following relations

(VXP)Y = ApyX +th(X,Y) + (eap(f)) {~g(X,pY)E — n(Y)PX}
— SHWEV)X —w(V)PX 4+ (XY ) ()T — (X o1 T] ()

(VxF)Y = fh(X,Y)—h(X,PY)— (exp(f))3n(Y)FX

b e()FX — g(X, V) (et + (X, 0¥ ) ()", Q
(VXON = A;nX = PANX = (eap(f))2g(X, N)¢

— L{e(eN)X ~ w(N)PX + g(X.oN) ()T, (10)
(Vxf)N = —h(X,tN) - FAyX

£ SWNFX +g(X, oN) (@)}, (1)
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for all X,Y € TM and N € TM~ such that ¢ is tangent to M.
From (5), the Gauss and Ricci equations of M™ C (M?"*1 . & 1, g) are given, respec-
tively, by

eXp(_f)g(R(X7Y)Z’W) = g(R(X,Y)Z,W)—g(h(X,W),h(Y,Z))
— GV, W),R(X,2)) + 5(BAg+gAB)(X,Y, 2, W)}

1
+ 1P A g(X,Y, 2, W), (12)

g(R(X,Y)N1,Na) = g(RH(X,Y)N1, N2) — §([A1, A2)X,Y), (13)

for all X,Y,Z,W € TM and Ny, Ny € TM~*, where the wedge product of tensor fields A
and B on M is given by

(AAB)(X,Y,Z,W) = A(X, Z)B(Y,W) — A(Y, Z)B(X, W),

for all X,Y,Z,W € TM.

4. Invariant Submanifolds

A submanifold M™ of a conformal Kenmotsu manifold (M?F1 p, €., g) is called an
invariant submanifold if ¢T), M C T, M for any p € M then ¢X = PX for any X € TM.

Lemma 1. Let M™ be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to £. Then

X, oY) = oh(X,Y)+ %{Q(X, PY)(H) = g(X, Y ) (puf) 1}, (14)
AnX = QANX + %{w(gpN)X —w(N)pX}, (15)
AveX + ANX =w(N)pX, (16)

for all X,Y € TM and N € TM*.
Proof. Since M is invariant, we get ¢ N = fN. Then (14) and (15) follow immediately
from (9) and (10), respectively. Since h is self-adjoint, from (14) we have

1
h(eX,Y) = ph(X,Y) + {g(V, e X)wt — g(X,Y)(pwf) '}, (17)
for all X,Y € TM. By using (17), we obtain

g(ANSDX7Y) = g(h((pX,Y),N) = Q(SOh(Xa Y)7N)

SO Vgl ) = g X, V)g(() N}
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= —g(h(X,Y),¢N) + %{Q(X, Y)w(eN) + g(¢X, Y)w(N)},
hence we get
AnoX = A X + %@@N)X +w(N)pXY, (18)
for all X € TM and N € TM*. Now (16) follows from (15) and (18).<

Theorem 2. Let M™ be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to €. Then M is minimal if and only if the Lee vector field w* of M is tangent to
M.

Proof. From the Gauss formula and (4) we have
. , 1
hX,Y) = VxY = Vx¥ — Aw(X)Y +w(Y)X - g(X, Y)whl, (19)
for all X,Y on M. Replacing Y by ¢Y in (19), we get

WX, 0Y) = oh(X,Y)— (Vx@)Y — (exp(f))? {g(X, oY )E +n(Y)PX}
— (V)X — w(Y)pX + g(X,Y)pwt — g(X, oY)},

taking the tangent and normal parts, we have
1
h(X,0Y) = oh(X,Y) = 5 {g(X, V) (pw?)* — g(X, oY) ()"},
hence
1
h(pX, 9Y) +h(X,Y) = {g(X,Y) = on(X)n(Y )} = g(X,Y)(pw?) . (20)

From the Gauss formula and (7), it follows that
Loyt
(e, €) = 3 (wh)* (21)

Now, let {Ey, pEqs, & a1, -+, mTfl} be an orthonormal basis on M and suppose H is the
mean curvature vector field of M. Then, using (20) and (21) we have

m—1

o= %{EE (h(Ew, Eq) + h(@Eqs, pEy)) + h(£,8)} = %(wﬁ)L‘

This completes the proof of the theorem.«
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Lemma 2. Let M™ be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to €. Then

[An, Apn] = —2¢TF;, (22)

for any N € TM*, where

1
In = Ay — qw(N)1, (23)

and I denotes the identity transformation.
Proof. Lemma 2 results from (18).«

Let Riz is the holomorphic bisectional curvature of a conformal Kenmotsu manifold
(M2 . € 1, g), and 0,6 are two holomorphic 2-planes tangent to M at a point p € M.
Let u € 0 and v € ¢ such that ||u|| = 1, ||v|]] = 1. Then, by definition we have

Riz(0,6) = g(R(v, yv)u, ppu). (24)

Theorem 3. Let M™ be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to . If M has the negative holomorphic bisectional curvature, then the normal
bundle TM* admits no parallel connection.

Proof. We prove this theorem by contradiction. Let the normal bundle TM* admits
parallel connection. Then RJ-(X, Y)N; =0 for all X,Y € TM and N; € TM+. We put
Ny = ¢Nj in the Ricci equation, hence we obtain

Q(R(XaY)vaSDNl) = *g([AvaAlﬂNJXvY)' (25)
Substituting (22) into (25) we get g(R(X,Y)N1,oN1) = 2¢(¢Tx, X,Y). Taking X = Y

in this equation, suppose o, d are holomorphic 2-planes spanned by {u, p,u} and {v, p,v},

respectively, where u = (HTYH)P and v = (ﬁ)p. From (12) it follows that Ty, is self-

adjoint. Hence from (24) we obtain
0> |Y|?|N1[*Riz(0,6) = 2||Tw, I3,
that is a contradiction.«

For further use, we set B = (*B,d = /*w and B = Vi — %w ® &, hence
B(X,Y) = B(X,Y) - w(h(X,Y)),
for all X,Y € TM. Moreover
B(X,Y) = g(B(X,.)",Y),

for all X, Y € TM.
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5. Anti-Invariant Submanifolds

A submanifold M™ of a conformal Kenmotsu manifold (M2 0 €., g) is called an
anti-invariant submanifold if T, M C T,,M L for any p € M. Then we have PX = 0 and
fN =0 for any X € TM and N € TM~*.

Lemma 3. Let M™ be an anti-invariant submanifold of a conformal Kenmotsu manifold
M tangent to £&. Then

A X = —ph(X,Y)+ S {wleV)X +g(XV)@AT), (20
g([AwZaAsOW]va) = g(h(X,W),h(Y,Z))—g(h(X,Z),h( ’ ))

SO0 Z)e(h(X, W) + g(X, W)w(h(Y, 7))

GV W)(h(X, 2)) — (X, Z)w((Y, W)

+ w(eZ)®(Y,h(X,W)) + w(eW)®(X, (Y, Z))

— w(EW)e(Y,h(X, Z)) — w(eZ)®(X, h(Y,W))}

Il X)g (Y, Z) + (o Z)(pY (X, W)

— w(@Z)w(eX)g(Y, W) — w(eW)w(eY)g(X, Z)

+ Wt P (g(X, Z2)g (Y, W) — g(X, W)g(Y, 2))}, (27)
for all X,Y,Z,W € TM, where the fundamental 2-form ® is defined by P(X)Y) =
9(X, YY) for all vector fields X, Y on M.

Proof. Since M is anti-invariant, (26) results from (8). Now, substituting (26) into
9([Apz, Aew X, Y) = §(Apw X, ApzY) — §(Apz X, ApwY'), we get (27).<

Theorem 4. Let M™ be an anti-invariant submanifold of a conformal Kenmotsu manifold
M tangent to €. Then M has the flat normal curvature tensor if and only if

R(X,Y)Z

n(R(X,Y)Z)¢ — %{B(X, 2)Y + B(Y,2)X

B(Y, Z)n(X)¢ + B(X,€)g(Y, Z)¢ — B(Y,€)g(X, Z)¢}

— LI PA(X, 2)Y g, 2)X) + (I — ean(£) oY, 2)X

- 9(X,2)Y +9(X, Z)n(Y)§ — g(Y, Z)n(X)&}, (28)

+ o+

for all X,Y,Z € TM. < i
Proof. Since (Vx@)Y = —g(X, oY) —n(Y)pX, we have

RX,Y)pZ = GRX,Y)Z+q§(Y,2)pX
- 9(X,Z2)pY +9(X,02)Y — g(Y,p2) X, (29)
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for all vector fields X,Y,Z on a Kenmotsu manifold (M?"+1, 3,1, g) [7]. Substituting
(5) into (29), we obtain
R(X,Y)pZ = @R(X,Y)Z - %{B(X, ©Z)Y — B(Y,0Z)X + B(Y, Z)pX
— B(X,2)pY + B(Y, )g(X,0Z) — B(X, ) g(Y,0Z)
wB(Y, )g(X,Z) + ¢B(X, ) g(Y. 2)} + - (Hwﬁll2 — exp(f))
{9(X, 2)eY —g(Y, Z)pX +g(Y,02) X — g(X,0Z)Y},

—_

for all vector fields X,Y,Z on M. Taking the inner product of the above equation with
the vector field W and using the Ricci and Gauss equations, we get
g(RY (X, Y)pZ,oW) = §([Apz, Apw]X,Y)
= G(R(X,Y)Z,W) = n(R(X,Y)Z)n(W)
g(W(X, W), h(Y, Z)) + g(h(Y, W), h(X, Z))
S (BUX.2)g(V, W) ~ B(Y, 2)g(X, W)
B(Y,W)g(X,Z) - B(X,W)g(Y, Z)
— B(X, Z)n(Y)n(W) + B(Y, Z)n(X)n(W)
B(X,§)g(Y, Z)n(W) — B(Y,&)g(X, Z)n(W)}
- %(Ilwﬁ\l2 —exp(f){g(X, W)g(Y, Z) — g(X, Z)g(Y, W)
+ 9(X, Z2)n(Y)n(W) — g(¥, Z)n(X)n(W)}. (30)

+ o+

+

for all vector fields X,Y,Z, W € TM. From (26), we have
1
for all vector fields X,Y, Z € TM. Putting (27) in (30) and using (31), we obtain

—oRHX,Y)pZ = R(X,Y)Z-n(R(X, Y)Z)§+%{B(X,Z)Y

- BX, Y )£+B(YZ)( )§+ B(X,§)g(Y, Z)¢

(X,
+ B(Y,2)X +g(X,Z)B(Y,.)* — g(Y, Z)B(X, .)*
(X,
(Y, 8)9(X, Z2)¢} + IIw“H {9(X,2)Y —g(Y,Z)X}

- B

- (anﬁH? —exp(N){9(Y, 2)X = g(X, 2)Y + g(X, Z)n(Y)§
— g(Y, Z)n(X)¢},
for all X,Y,Z € TM. Thus R = 0 if and only if (28) holds.«
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