Azerbaijan Journal of Mathematics
V. 5, No 1, 2015, January
ISSN  2218-6816

Existence of Best Proximity Points in Regular Cone Met-
ric Spaces

L. Kumar*, T. Som

Abstract. In this paper we have established some conditions which guarantee the existence of
the distance between two subsets of a regular cone metric space. Under these conditions we have
given a main result which guarantee the existence of best proximity points for cyclic contraction
mappings in regular cone metric space, which extends the earlier result of Haghi et al(2011).
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1. Introduction

Consider a self map T defined on the union of two subsets A, B of a metric space X. A
mapping T : AUB — AU B is said to be cyclic provided that T(A) C B and T'(B) C A.
Let T be a cyclic map. If there exists a point z € AU B such that d(z,Tx) = d(A, B), then
x is a best proximity point with regard to T', where dist(A, B) := inf{d(x,y) : (z,y) €
A x B}.

In 2003, Kirk et al. [9] proved the following extension of the Banach contraction
principle for cyclic mappings.

Theorem 1. [9] Let A, B be two non empty closed subsets of a complete metric space
(X,d). Suppose that T is a cyclic mapping such that d(Tz,Ty) < kd(x,y), for some
k€ (0,1) and for all (x,y) € (A x B). Then T has a unique fized point in AN B.

Further, in 2006, Eldered et al.[4] introduced the class of cyclic contractions and ob-
tained best proximity point results for cyclic contraction mappings.

Definition 1. [4] Let A, B be two non empty subsets of a metric space (X,d). A
mapping T : AUB — AU B is sald to be cyclic contraction if T is cyclic and
d(Tz,Ty) < kd(z,y) + (1 — k)dist(A, B), for some k € (0,1) and for all (z,y) € A x B.
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There are further works about best proximity points for certain contraction mappings,
some of them are noted in [3], [11], [14] and [16].

On the other hand, in 2007, Haung et al.[7] introduced cone metric spaces and proved
the Banach contraction principle for such spaces. Cone metric space is a generalisation of
metric space in which the set of real numbers is replaced by a real Banach space. Several
fixed point results in cone metric space by different authors are noted in [2], [5], [8], [10],
[12], [13], [14] and [15]. Before coming to our main results we give some preliminaries
about cone metric spaces.

Definition 2. [7] Let E be a real Banach space and 6 be the zero of the Banach space
E. Let P be a subset of . P is called a cone if

(i) P is closed, non-empty and P # {6}
(ii) axz + by € P for all x,y € P and non-negative real numbers a, b

(iif) P(=P) = {6}

For a given cone P we can define a partial ordering < with respect to P by =z < y if and
only if y — z € P. Here x < y will stand for x < y and x # y, while x < y will stand for
y —x € intP; where intP denotes the interior of P. x <y is same as y > x and x < y is
same as y > x. A cone P is called normal if there is a real number K > 0 such that for
all z,y € E,

0 <z<y implies [zf| < K]yl

The least positive number satisfying the above inequality is called the normal constant of
cone P. The cone P is called regular if every increasing and bounded above sequence {zy,}
in E is convergent. Equivalently, the cone P is regular if and only if every decreasing and
bounded below sequence is convergent. It is well known that a regular cone is a normal
cone. The category of regular cone metric spaces is bigger than the category of metric
spaces (see [6])

Let E be a real Banach space with cone P in E, intP # (), and < be the partial ordering
with respect to P.

Definition 3. [7] Let X be a non-empty set. Suppose the mapping
d: X xX — E satisfies :
(i) 0 < d(z,y), for all z,y € X and d(x,y) = 0 if and only if x =y,
(ii) d(z,y) = d(y,x), for all z,y € X,

(iii) d(z,y) <d(z,z)+d(z,y), for all z,y,z € X.
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Then d is called a cone metric on X and (X, d) is called a cone metric space.

As the Banach space E is only partially ordered (not well ordered), so maximum (or min-
imum) of two elements does not exist necessarily in cone metric spaces. Thus, there is no
guarantee for existence of distance between two subsets of a cone metric space.

A subset A of a cone metric space X is said to be bounded whenever there exists e >> 6
such that d(z,y) <e for all z,y € A.

Now for the rest of this paper, F is a real Banach space, (X,d) is a regular cone met-
ric space, < is the partial ordering with respect to P and A, B are non-empty subsets of X.

Definition 4. [6] An element p € P is said to be a lower bound of A x B whenever
p < d(a,b) for all (a,b) € A x B. Moreover, if p > ¢ for all lower bounds ¢ of A x B, then
p is called the greatest lower bound of A x B. In this case, we denote it by dis(A, B).
Clearly in above definition, dis(A, B) is a unique vector in P if it exists. Also, 6 is always
a lower bound of A x B.

Now we give some results of Haghi et al.[6], which are the motivation for our main results.

Theorem 2. [6] Let T : AUB — AU B be a map such that T(A) C B, T(B) C A and
d(Tz,Ty) < kd(z,y) + (1 — k)d(a,b), for all (a,b), (z,y) € A X B, where k € [0,1) is a
constant. Then dis(A, B) exists.

Theorem 3. [6] Let ¢ : P — P be a strictly increasing map, T : AUB — AU B be a
map satisfying T(A) C B, T(B) C A and d(Tz,Ty) < d(z,y) — ¢(d(z,y)) + ¢(p), for all
(z,y) € A x B, where p is a lower bound for A x B. Then dis(A, B) = p.

Remark 1. If we put ¢(z) = (1 —k)z,k € [0,1), then the inequality condition reduces to
d(Tz,Ty) < kd(z,y) + (1 — k)p and in this case also we have dis(A, B) = p.

Theorem 4. [6] Let ¢ : P — P be a strictly increasing sub-additive map such that
d(0) = 6 and I — ¢ be also strictly increasing map. Also, let T : AUB — AU B be
a map satisfying T(A) C B, T(B) C A and d(Tx,Ty) < ¢(d(z,y)) + (I — ¢)(p), for all
(z,y) € A x B, where p is a lower bound for A x B and I is the identity map. Then
dis(A, B) = p.

Definition 5. [6] A map ¢ : P — P is called cone L-function whenever (0) = 0,1 (s) >
0, for all s € P with s # 6§ and there exists d5 >> 6 such that ¢(t) < sforall s <t < s+0s.
It is obvious that 1(s) < s for all s € P with s # 6 whenever 1) is a cone L-function.

Theorem 5. [6] Let ¢ : P — P be a cone L-function and T : AUB — AU B be a map
satisfying T(A) C B, T(B) C A and d(Tz,Ty) —p < ¥(d(z,y)) —p), for all (z,y) € Ax B
with p < d(x,y), where p is a lower bound for A x B. Then dis(A, B) = p.

Theorem 6. [6] Suppose that the conditions of the Theorems 2, 3 and 5 hold, xo € A and
Xy = Txp_1 for alln > 1. If {xey} has a convergent subsequence in A, then there exists
x € A such that d(x,Tx) = dis(A, B).
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2. Main results

Now we give our main results, which extend the results of Haghi et al.[6].

Theorem 7. Let T : AUB — AU B be a map such that T(A) C B, T(B) C A and
d(Tz,Ty) < g{d(Tx,x) +d(Ty,y)} + (1 — k)d(a,b), for all (a,b), (x,y) € A x B, where
k €10,1) is a constant. Then dis(A, B) exists.

Proof. Let g € AU B and set x,, = Txp—1 and dy 1 = d(zp41,2y,) for all n > 1.Then
for all (a,b) € A x B,

A i1,0) < {01, 0) + (g, 2 1)} + (1~ K)o,

k 21 — k)
CES A CEy

— dn+1 < d(a’ b)

ey < @_]{:Mdn - Qﬁk))d(a, b)

— dpt+1 < hd, + (1 — h)d(a,b), where, h= @lﬁk) €[0,1).
It follows that dy11 < d, for all n > 1. By the regularity of P, there exists p € P such
that lim,_cod, = p. Therefore, p < d(a,b) holds for any (a,b) € A x B. Now if ¢ is a
lower bound for A x B, then ¢ < d,, for all n > 1. Hence, ¢ < p. Therefore dis(A, B) = p.

Theorem 8. Let T : AUB — AU B be a map such that T(A) C B, T(B) C A and
d(Tz,Ty) < 5{d(Tz,y) + d(Ty,z)} + (1 — k)d(a,b), for all (a,b), (z,y) € A x B, where
k €10,1) is a constant. Then dis(A, B) exists.

Proof. Let zg € AU B and set x,, = Txy,—1 and dp+1 = d(xpy1,xy,) for all n > 1.Then
for all (a,b) € A x B,

A1) < Sl 01) + A, 20)} + (1= K0, )

s dwn, ) < g{d(mnﬂ,xn) F (@ an 1)} + (1 — k)d(a, b)

2 2(1 — k)
e-n"t 2-n

— dn+1 < d(a7 b)

= dpt1 < (Q_kk)dn + (1= (Q—%)d(% b)

k
— dn+1 < hdn + (1 - h)d(a, b), Where, h = m S [0, ].)
It follows that d,4+1 < d, for all n > 1. By the regularity of P, there exists p € P such
that limy,—cody, = p. Therefore, p < d(a,b) holds for any (a,b) € A x B. Now if ¢ is a
lower bound for A x B, then ¢ < d,, for all n > 1. Hence, ¢ < p. Therefore dis(A, B) = p.
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Theorem 9. Let T : AUB — AU B be a map such that T(A) C B, T(B) C A and
AT, Ty) < E{d(Tx,2) + d(Ty,y) + AT, y) + d(Ty, )} + (1 — k)d(a,b), for all (a,b),
(z,y) € Ax B, where k € [0,1) is a constant. Then dis(A, B) ezists.

Proof. Let g € AU B and set x,, = Txy,—1 and dp+1 = d(xp41,2,) for all n > 1.Then
for all (a,b) € A x B,

Aens1,0) < A A1, 20) + A, 2 1) + (g, 701) + A, 22)
+ (1 - k)d(a, b)
= dypy1 < Z{d(mnﬂ,xn) + d(Tn, Tn—1) + d(Tps1, ) + d(2p, Tn_1)}
+ (1 - k)d(a,b)
dpy1 < g{dn+1 +dp} + (1 —k)d(a,b)
dpy1 < g{dnﬂ +dn} + (1 - k)d(a,b)
(2 = B)dnsy < kdy + 2(1 — k)d(a, b)

A

s < G+ (L= (oD

k

— dny1 < hdp + (1 = h)d(a,b), where, h= (2—k)

€ [0,1).

It follows that dy11 < d, for all n > 1. By the regularity of P, there exists p € P such
that limy,—cody, = p. Therefore, p < d(a,b) holds for any (a,b) € A x B. Now if ¢ is a
lower bound for A x B, then ¢ < d,, for all n > 1. Hence, ¢ < p. Therefore dis(A, B) = p.

With the help of a control function v, we give our next two results, which generalize
Theorem 3 and Theorem 4, respectively.

Theorem 10. Let ¢,¢ : P — P be strictly increasing maps with ¢ continuous. Let
T:AUB — AUB be a map satisfying T(A) C B, T(B) C A and ¢(d(Tz,Ty)) <
Y(d(z,y)) — o(d(z,y)) + ¢(p), for all (x,y) € A X B, where p is a lower bound for A x B.
Then dis(A, B) = p.

Proof. Let 29 € AU B and set x,, = Tzp—1 and dp+1 = d(Tp41,2,) for alln > 1. As pis
a lower bound for Ax B, sop <d, foralln >1 = ¢(p) < ¢(d,) = o(p) —p(d,) <0
for all n > 1. Now from the inequality condition we have,

Y(dnt1) < P(dn) — d(dn) + d(p) < (dy).

As 1) is strictly increasing, d,+1 < d,, for all n > 1. By the regularity of P, there exists
q € P such that lim,,cody, = q. Since ¢(d,) — ¢(p) < ¥(dy) — ¥ (dp41) for all n > 1 and
limp—oo®(dy) — Y(dpt1) = 0 = limp000(dn) = ¢(p). Since p < d,, for all n > 1,
p < q. Therefore, ¢(p) < ¢(q) < ¢(dy,) for all n > 1. Hence, ¢(p) = ¢(q) = p = ¢ and
so dis(A, B) = p.
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Theorem 11. Let 1, ¢ : P — P be strictly increasing mappings such that 1(0) = ¢(0) =
0 and —¢ is also strictly increasing map. In addition let ¢ be subadditive, 1 be continuous
and YP(c) < ¢, forallc> 0. Let T : AUB — AU B be a map satisfying T(A) C B,
T(B) C A and Y((Tz,Ty)) < ¢(d(z,y)) + (¥ — ¢)(p), for all (x,y) € A x B, where p is a
lower bound for A x B. Then dis(A, B) = p.

Proof. Let o € AU B and set z, = Tx,—1 and dpy1 = d(xpy1,2,) foralln > 1. Asp
is a lower bound for A x B,sop <d, foralln >1 = (¢ —¢)(p) < (¢¥ — ¢)(d,,). Then
from inequality condition

@Z)(dn-i-l) < ¢(dn) + (7/] - ¢)(p)

S0 Y(dn41) =¥ (dn) < ¢(dn)+(V—0)(p) —¢(dn) < (v—0)(p)—(v=¢)(dn) <0 = dpy1 <
d, for all n > 1. By the regularity of P, there exists ¢ € P such that lim, _.d, = q.
Now, let § < ¢ € P. Then, there exists a positive real number r such that ¢+ N, () C P,
where

N.(O)={teE:|t—0]|<r}
Choose a natural number ng such that 6 < d,, — q < ¢ for all n. > ng. So
0 < ¢(dn) < ¢p(q+c) < d(q) + ¢(c) < ¢(q) +¥(c) < d(q) + ¢, Vn = no.
And since ¢(q) < ¢(dn),Yn > ng = limps0ed(dn) = ¢(q). Again
U(dnt1) < d(dn) + (¥ — ¢)(p)

= limp—ooth(dpi1) — limp—eod(dn) < (¥ — ¢)(p)
= (¥ —¢)(a) < (¥ —d)(p).

As (¢p — ¢) is strictly increasing, ¢ < p and since p < d, for all n > 1, we have
p < q = p=q. This implies that dis(A, B) = p.

Further we give two results, which extend Theorem 5.

Theorem 12. Let ) : P — P be a cone L-function and T : AUB — AU B be a map
satisfying T(A) C B, T(B) € A and d(T,Ty) — p < ¢(3(d(Tz,x) + d(Ty,y)) — p), for
all (z,y) € A x B, where p is a lower bound for A x B. Then dis(A, B) = p.

Proof. Let 29 € AU B and set z,, = Tz,,—1 and d,+1 = d(2p41,x,) for all n > 1. Then
from inequality condition, we have

1
dn—i—l —p< w(f(dn—‘rl + dn) _p)
2

1

- dn+1—p§2(dn+1—|—dn)—p (CY(s) <sVse P with s#0)

1 1
— idnJrl < §dn = dn+1 < d,.
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Let s, = d, —p. Then sp4+1 < s,. Now,

1 1
Snt1 < ¢(§(dn+1 —p)+ §(dn —-p))
1 1
= Sp41 < ¢(§(5n+1 +55)) < 5(5n+1 +5p) < sp.

Since s, is convergent, we have, limn_,oow(%(snﬂ + 8p)) = limp—ooSn = q. We claim
that ¢ = 0. If not, then since s, is a strictly decreasing sequence q < s,,Vn. As v is a
cone L-function and ¢ # 6, there exists ¢, > 6 such that ¢ (t) < ¢,Vq <t < ¢+ §,. Since
ltmy—00Sn = q, there exists a natural number ng such that ¢ < s, < g+ d4,Vn > np.
Then (3 (Spt1 + $n)) < ¢, Vn > ng, which contradicts that ¢ < sp41 < Y(3(Sn41 + Sn)).
Hence, ¢ = 0 implies lim,_,~d, = p and so dis(A, B) = p.

Theorem 13. Let ¢ : P — P be a cone L-function and T : AUB — AU B be a map
satisfying T(A) C B, T(B) C A and d(Tx,Ty) —p < ¢(%(d(Tm,y) +d(Ty,x)) — p), for
all (z,y) € A x B, where p is a lower bound for A x B. Then dis(A, B) = p.

Proof. Let 29 € AU B and set z,, = T'z,—1 and d,+1 = d(2p41,xy,) for all n > 1. Then

putting x = x,,y = x,_1 in the inequality condition, we have

Awns1,20) = p < V@, 201) +dlan,a0)) — )
— d?’H—l —p < 'lp(%(d(xn-‘,-l;xn) + d(xnaxn—l)) - p)
— dn+1 —p< ?ﬁ(%(dnﬂ + dn) _p)

1
= dn+1—p§§(dn+1+dn)—p (-(s) <sVse P with s#80)

1 1
- idnJrl < idn - dnJrl < dy.

The rest of the proof is the same as in Theorem 12, so we omit it here.
Now we give the result that guarantees the existence of best proximity point in regular
cone metric space.

Theorem 14. Suppose that the conditions of Theorems 7, 8, 10, 12 and 13 hold, xg € A
and xp, = Txp—y for alln > 1. If {x2,} has a convergent subsequence in A, then there
exists x € A such that d(x,Tz) = dis(A, B).

Proof. Let {z2,, } be the convergent subsequence of {x2,} in A. Choose x € A such that
lim,, ,o®2,, = x. Note that the relation

b= d’iS(A, B) < d($’x2nk—1) < d(x’xan) + d($2nk7$2nk—l)

holds for all & > 1. Since {d(x2p, , T2n,—1) } is a subsequence of {d,, }, we have d(z2y, , Tan,—1) —
p. Hence,
llmn—ﬂ)od(xv xan—l) =D-
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Firstly suppose that the conditions of Theorems 7 and 12 hold. Then in both cases, the
inequality condition implies

1
Now,

d(z,Tx) < d(x, xon,) + d(z2n,, Tx)

1
< d(x7$2nk) + §{d(x2nk’ x2nk_]-) +d(Tz,x)}.
This implies
1
d(z,Tx) < limp_oo{d(z, z2pn, ) + §{d2nrl +d(Tx,z)}}
= d(z,Tz) <p.

Now, suppose that the conditions of Theorems 8 and 13 hold. Then in both cases, the
inequality condition implies

1
d(Tz,Ty) < 5{d(Tz,y) +d(Ty,2)}.
Now,

d(z,Tx) < d(z,z2n,) + d(z2n,, Tx)

1
< d(xvx%%) + Q{d(x%bk’x) + d(T.’E,JEan_l)}

3 1
§d(a¢, Ton, ) + i{d(m, Tx) + d(z, xon,—1)}-

This implies

3 1
d(z, Tz) < limp—oo {Qd(x, Top, ) + 5 {d(z,Tz) + d(m,xznk_l)}}

—_

= d(z,Tz) < =(d(z,Tx) + p)

So, d(z,Txz) < dis(A,B). As p = dis(A, B), we have p < d(z,Tz). Hence d(xz,Tx) =
dis(A, B) = p.
Now, suppose that the conditions of Theorem 10 hold. Then the proof is the same as that
of Theorem 6.
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