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Abstract. This paper studies the basic equation of the theory of perturbations for two-dimensional
magnetic Schrödinger operator in C(R2) under some conditions on magnetic and electrical poten-
tials. The applicability of Fredholm theory to this equation is established.
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1. Introduction

Magnetic Schrödinger operators arise in many branches of physics, such as Ginzburg-
Landau theory of superconductivity, Bose-Einstein condensation theory and state studies
in quantum mechanics. Over the past 35 years, Schrödinger operators with magnetic fields
evolved into a special mathematical subject (see, e.g., [4-6], [8-16] and [21]).

Consider a magnetic Schrödinger differential expression

Ha,V =
2∑

k=1

(
1

i

∂

∂xk
+ ak(x)

)2

+ V (x) (1)

on two-dimensional space R2, where i =
√
−1 is an imaginary unit, x = (x1, x2) ∈ R2,

a(x) = (a1(x), a2(x)) and V (x) are magnetic and electrical potentials, respectively. These
potentials are both real functions. Note that if the magnetic field is perpendicular to the
plane x1Ox2 and holds a three-dimensional charged particle in this plane, then, leaving
aside the free movement of the particle along the axis x3, we obtain the Hamiltonian of
the form Ha,V on the state space (see [7] or [4]).

Before stating the purpose of this work, let’s recall some singularities of two-dimensional
Schrödinger operators. It is well-known that the two-dimensional Schrödinger operators
(with no magnetic potential) have some singularities that make them very difficult to study.
First, the fundamental solution of the free Hamiltonian has a logarithmic singularity. Se-
cond, the classical Hardy inequality does not hold. Third, the Cwikel-Lieb-Rosenblum
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inequality does not hold. And finally, Sobolev’s imbedding theorem for a limiting expo-
nent equal to infinity does not hold, i.e. the space W 1

2 (R2) (first-order Sobolev space) is
not continuously imbedded in L∞(R2). There is an example in [2, p.118] which shows
that a function from W 1

2 (R2), in general, is not necessarily essentially bounded in R2.
Denote by C(R2) a Banach space of all bounded continuous functions on R2 equipped

with the norm

‖f‖C(R2)
= sup

x∈R2

|f(x)| < +∞.

In this work, we study the basic equation of the theory of perturbations for two-
dimensional magnetic Schrödinger operator in the space C(R2) generated by the differen-
tial expression (1) where the real magnetic and electrical potentials a(x) and V (x) satisfy
the following conditions:

1)
∫
R2
|a(x)|ν dx < +∞,

with ν > 2, |a(x)| =
√
a21(x1, x2) + a22(x1, x2);

2)
∫
R2
|Φ(x)|µ dx < +∞,

with µ > 1, Φ(x) ≡ Φ(x1, x2) = a2(x1, x2)+V (x1, x2)+idiva(x1, x2), a
2(x) ≡ a2(x1, x2) =

a21(x1, x2) + a22(x1, x2), diva(x1, x2) = ∂a1(x1,x2)
∂x1

+ ∂a2(x1,x2)
∂x2

.
Note that the similar problems have been considered in [3] for one-dimensional case

and in [17], [18] for three-dimensional case.

2. Properties of the fundamental solution of free Hamiltonian

It is known (see, e.g., [24, p.204]) that the generalized function

G0(x, y, λ) =
i

4
H

(1)
0 (λ |x− y|)

is a fundamental solution of the operator −∆− λ2, i.e.

(−∆− λ2)G0(x, y, λ) = δ(x− y),

where ∆ is the two-dimensional Laplace operator, δ(x− y) is the Dirac δ-function, λ 6= 0

is a complex number, H
(1)
0 (λ |x− y|) is the Hankel function of the first kind. It is known

(see, e.g., [19] or [25]) that the analytic function H
(1)
0 (z) is multi-valued in the domain

Ω = {z : 0 < |z| < +∞}, and the points 0 and ∞ are the branch points of this function.

There are many ways to “cut” the function H
(1)
0 (z) into regular branches. It depends on

the problem we solve. As we consider the basic equation of the theory of perturbations, it
is reasonable to cut the complex plane along the half-axis [0,+∞) and choose the branch
of the Hankel function of the first kind which is expressed through the Poisson integral on
the upper side of the cut line (see [19, p.169]), i.e.

∀x > 0, H
(1)
0 (x) =

1

π

√
2

x
ei(x−

π
4 )
∫ +∞

0
e−tt−

1
2

(
1 +

it

2x

)− 1
2

dt.
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Denote by C+ = {λ ∈ C : Imλ > 0} the upper half plane (C is the complex plane).
Let H0 be the operator −∆ (it is called a free Hamiltonian) on L2(R2) with a domain

of definition D(H0) = W 2
2 (R2) (second-order Sobolev space). As the spectrum of the self-

adjoint operator H0 coincides with the positive half-axis [0,+∞), the operator H0 − λ2

is a bijection from W 2
2 (R2) to L2(R2) with a bounded inverse R0(λ

2) =
(
H0 − λ2

)−1
for

every complex number from C+. Operator R0(λ
2) is an integral operator (see, e.g., [20,

p.73, example 2]) with the kernel

G0(x, y, λ) =
i

4
H

(1)
0 (λ |x− y|),

i.e. for every f(x) ∈ L2(R2)

R0(λ
2)f(x) =

∫
R2

G0(x, y, λ)f(y)dy.

In the sequel, we will need the following proposition which includes some useful infor-
mation about the properties of function G0(x, y, λ).

Proposition. Function G0(x, y, λ) has the following properties:
10. ∂

∂xj
G0(x, y, λ) = − ∂

∂yj
G0(x, y, λ), j = 1, 2;

20. if x 6= y (x, y ∈ R2), then the following asymptotic formula holds as λ |x− y| → 0:

G0(x, y, λ) ∼ − 1

2π
ln (λ |x− y|) ;

30. if x 6= y (x, y ∈ R2) and 0 ≤ arg λ ≤ π, then the following asymptotic formula
holds as λ |x− y| → 0:

∂

∂xj
G0(x, y, λ) ∼ − 1

2π

xj − yj
|x− y|2

, j = 1, 2;

40. if x 6= y (x, y ∈ R2) and 0 ≤ arg λ < π, then the following asymptotic formula
holds as |λ| |x− y| → +∞:

G0(x, y, λ) =
i

4

√
1

πλ |x− y|
ei(λ|x−y|−

π
4 )
[
1 +O

(
1

λ |x− y|

)]
;

50. if x 6= y (x, y ∈ R2), Imλ0 > 0, Imλ > 0 and |λ− λ0| < |λ0|, then the following
decomposition holds:

G0(x, y, λ) = G0(x, y, λ0)J0 ((λ− λ0) |x− y|) +

i

2

∞∑
k=1

(−1)kH
(1)
k (λ0 |x− y|)Jk ((λ− λ0) |x− y|) ,

where Jk is the Bessel function and H
(1)
k is the Hankel function of the first kind;

60. if x 6= y (x, y ∈ R2) and 0 ≤ arg λ2 ≤ π, then there is a number A > 0 such that
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|G0(x, y, λ)| ≤ A√
|λ| |x− y|

;

70. if Imλ > 0, then ∫
R2

|G0(x, 0, λ)|2 dx < +∞;

80. if Imλ > 0, then ∫
R2

|G0(x, 0, λ)| dx < +∞.

The properties of G0(x, y, λ) listed in Proposition are in fact the properties of the
Hankel function.

Property 10 follows directly from the equality

∂

∂xj
|x− y| = − ∂

∂yj
|x− y| ,

where |x− y| =
√

(x1 − y1)2 + (x2 − y2)2. Property 20 follows from the formula

H
(1)
0 (z) ∼ i 2

π
ln z (z → 0)

(see [1, p.180, formula 9.1.8]). Property 30 follows from the equalities

∂

∂xj
G0(x, y, λ) =

i

4

d

d(λ |x− y|)
H

(1)
0 (λ |x− y|) λ(xj − yj)

|x− y|
, j = 1, 2,

d

dz
H

(1)
0 (z) = −H(1)

1 (z)

(see [25, p.89, Section 3.6, formula (7)]) and the asymptotic formula

H
(1)
1 (z) ∼ −2i

π

1

z
(z → 0, 0 ≤ arg z ≤ π)

(see [1, p.180, formula 9.1.9]). Property 40 is a direct consequence of the asymptotic
formula

H
(1)
0 (z) =

√
2

πz
ei(z−

π
4
)

[
1 +O

(
1

z

)]
(|z| → +∞, 0 ≤ arg z < π)

(see [19, p.173, formula (13)]). Property 50 is established using Neumann-Sonin addition
formula (see [25, p.158, Section 5.3, formula (2)])

H
(1)
0 (z + t) =

+∞∑
m=−∞

H
(1)
−m(t)Jm(z) (|z| < |t|)
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and Bessel formulas

J−k(z) = (−1)kJk(z)

(see [1, p.180, formula 9.1.5]),

H
(1)
−k(t) = (−1)kH

(1)
k (t)

(see [1, p.180, formula 9.1.6]). Property 60 was established in [22, p.192]. Last two
properties 70 and 80 are the corollaries of properties 40 and 60.

3. Investigation of operator function K(λ) in the half plane C+

Denote by L (C(R2)) a Banach space of linear continuous operators from C(R2) to
C(R2).

To justify the application of Fredholm theory to the resolvent equation of two-dimensional
magnetic Schrödinger operator, we consider integral operator

K(λ)f(x) =

∫
R2

K(x, y, λ)f(y)dy

depending on parameter λ with the kernel

K(x, y, λ) = G0(x, y, λ)Φ(y)− 2i
∂G0(x, y, λ)

∂x1
a1(y)− 2i

∂G0(x, y, λ)

∂x2
a2(y).

In the sequel, we will need the following
Lemma. Let the conditions 1) and 2) hold. Then the following equalities are true:

lim
0<δ→0

{
sup
x∈R2

∫
|x−y≤δ|

|a(y)|
|x− y|

dy

}
= 0, (2)

lim
0<δ→0

{
sup
x∈R2

∫
|x−y≤δ|

ln
1

|x− y|
|Φ(y)| dy

}
= 0. (3)

Proof. Let’s apply Hölder’s inequality

∫
|x−y|≤δ

|a(y)|
|x− y|

dy ≤

{∫
|x−y|≤δ

|a(y)|ν dy

} 1
ν
{∫
|x−y|≤δ

1

|x− y|p
dy

} 1
p

(4)

with 1
ν + 1

p = 1 to the integral ∫
|x−y|≤δ

|a(y)|
|x− y|

dy.

From ν > 2 it follows that p = ν
ν−1 < 2. As the integral
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∫
|x−y|≤δ

1

|x− y|p
dy

converges uniformly with respect to x ∈ R2 for p < 2, the absolute continuity of the
Lebesgue integral and the inequality (4) immediately imply (2). Similarly, using Hölder’s
inequality we obtain∣∣∣∣∣
∫
|x−y|≤δ

ln
1

|x− y|
|Φ(y)| dy

∣∣∣∣∣ ≤
{∫
|x−y|≤δ

|Φ(y)|µ dy

} 1
µ
{∫
|x−y|≤δ

|ln |x− y||p dy

} 1
p

, (5)

where 1
µ + 1

p = 1. As for every positive number ε it holds that

lim
ρ→0

ρε ln ρ = 0,

from inequality (5) we get the validity of equality (3). Lemma is proved.J
The following theorem is true.
Theorem 1. If the conditions 1)and 2) hold, then K(λ) ∈ L(C(R2)) for every λ ∈ C+.
Proof. According to properties 20 and 40 (see Proposition in Section 2) and the

relation (3), there exist positive constants M1, M2, r and δ0 such that

sup
x∈R2

{∫
|x−y|≤δ0

|G0(x, y, λ)Φ(y)| dy

}
≤M1, (6)

|G0(x, y, λ)| ≤M2e
−Imλ|x−y| (7)

with |x− y| > r.
Represent the integral

K1(x, λ) =

∫
R2

G0(x, y, λ)Φ(y)dy

in the following form:

K1(x, λ) =

∫
|x−y|<δ0

G0(x, y, λ)Φ(y)dy +

∫
δ0≤|x−y|≤r

G0(x, y, λ)Φ(y)dy+

∫
|x−y|>r

G0(x, y, λ)Φ(y)dy ≡ K(1)
1 (x, λ) +K

(2)
1 (x, λ) +K

(3)
1 (x, λ). (8)

Using the inequalities (6), (7), the condition 2) and the boundedness of G0(x, y, λ) for
δ0 ≤ |x− y| ≤ r, we obtain:

sup
x∈R2

∣∣∣K(i)
1 (x, λ)

∣∣∣ < +∞, i = 1, 2, 3. (9)

Now represent the integral
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K2(x, λ) =

∫
R2

(
∂G0(x, y, λ)

∂x1
a1(y) +

∂G0(x, y, λ)

∂x2
a2(y)

)
dy ≡

∫
R2

(a(y) · ∇G0(x, y, λ)) dy

in the form

K2(x, λ) =

∫
|x−y|<δ0

(a(y) · ∇G0(x, y, λ)) dy +

∫
δ0≤|x−y|≤r

(a(y) · ∇G0(x, y, λ)) dy+

∫
|x−y|>r

(a(y) · ∇G0(x, y, λ)) dy ≡ K(1)
2 (x, λ) +K

(2)
2 (x, λ) +K

(3)
2 (x, λ), (10)

where ∇ =
(

∂
∂x1

, ∂
∂x2

)
is a symbolic Hamilton vector. Using property 30 (see Proposition

in Section 2), relation (10), condition 1) and inequality

|< x− y, a(y) >| ≡ |(x1 − y1)a1(y) + (x2 − y2)a2(y)| ≤ |x− y| |a(y)| ,

and proceeding in the same way as we did when estimating the integrals K
(i)
1 (x, λ) (i =

1, 2, 3), we have

sup
x∈R2

∣∣∣K(i)
2 (x, λ)

∣∣∣ < +∞, i = 1, 2, 3. (11)

Let u(x) ∈ C(R2) and

h(x) =

∫
R2

K(x, y, λ)u(y)dy.

From representations (8) and (10), by virtue of inequalities (9) and (11), we obtain

sup
x∈R2

|h(x)| ≤
_
k ‖u‖C(R2)

,

where

_
k=

2∑
i=1

3∑
j=1

sup
x∈R2

∣∣∣K(j)
i (x, λ)

∣∣∣ < +∞.

From relations (2), (3) and inequality (7), due to the continuity of the Hankel function

of the first kind H
(1)
0 (z) in domain Ω = {z ∈ C : z /∈ [0,+∞)}, we obtain h(x) ∈ C(R2).

Theorem is proved.J
The following theorem is true.

Theorem 2. If the conditions 1) and 2) hold, then the operator-valued function K(λ)
is analytic with respect to λ in the half plane C+ in the uniform operator topology.
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Proof. Choose the positive number r great enough and the positive number δ0 small
enough to satisfy, in addition to (7), the inequalities∣∣∣∣ ∂∂xjG0(x, y, λ)

∣∣∣∣ ≤M2e
−Imλ|x−y|, j = 1, 2, (12)

for |x− y| > r and the asymptotic formulas

Jk(z) ∼
zk

k!2k
(0 < arg z < π, |z| < δ0), k = 0, 1, 2, ..., (13)

H
(1)
k (z) ∼ − i

π

(k − 1)!2k

zk
(0 < arg z < π, |z| < δ0), k = 1, 2, ..., (14)

(see [1, p.180, formulas 9.1.7 and 9.1.9]).
Let λ0 ∈ C+. Represent the operator K(λ) in the form

K(λ) = K1,λ0(λ) +K1,λ0,r(λ) +K1,r(λ),

where

K1,λ0(λ)u(x) =

∫
|x−y|< δ0

|λ0|

K(x, y, λ)u(y)dy,

K1,λ0,r(λ)u(x) =

∫
δ0
|λ0|
≤|x−y|≤r

K(x, y, λ)u(y)dy,

K1,r(λ)u(x) =

∫
|x−y|>r

K(x, y, λ)u(y)dy

for u(x) ∈ C(R2). From inequalities (7) and (12), by virtue of conditions 1) and 2), it
follows that K1,λ0,r(λ) and K1,r(λ) are analytic functions in C+ in the uniform operator
topology. Let’s prove that the function K1,λ0(λ) is analytic in δ-neighborhood Uδ(λ0) =
{λ ∈ C+ : |λ− λ0| < δ} of the point λ0, where 0 < δ < min {δ0, Imλ0}. With this aim,
represent the operator K1,λ0(λ) in the form

K1,λ0(λ) = K
(1)
1,λ0

(λ)− 2iK
(2)
1,λ0

(λ),

where

K
(1)
1,λ0

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

G0(x, y, λ)Φ(y)u(y)dy,

K
(2)
1,λ0

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

(∇G0(x, y, λ) · a(y))u(y)dy

for u(x) ∈ C(R2). Using property 50 (see Proposition in Section 2), rewrite the integral

K
(1)
1,λ0

(λ)u(x) as follows:
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K
(1)
1,λ0

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

G0(x, y, λ)Φ(y)u(y)dy =

∫
|x−y|< δ0

|λ0|

{
G0(x, y, λ0)J0 ((λ− λ0) |x− y|) +

i

2
×

∞∑
k=1

(−1)kH
(1)
k (λ0 |x− y|)Jk ((λ− λ0) |x− y|)

}
Φ(y)u(y)dy.

From the asymptotic formulas (13) and (14) we have

H
(1)
k (λ0 |x− y|)Jk ((λ− λ0) |x− y|) ∼ −

i

πk

(
λ− λ0
λ0

)k
, k = 1, 2, .... (15)

Taking into account the inequalities∣∣∣∣∣1k
(
λ− λ0
λ0

)k∣∣∣∣∣ <
(
|λ− λ0|

δ

)k
, k = 1, 2, ...,

∣∣∣∣∣
∫
|x−y|< δ0

|λ0|

Φ(y)u(y)dy

∣∣∣∣∣ ≤ ‖u(x)‖C(R2)

∫
|x−y|< δ0

|λ0|

|Φ(y)| dy ≤

‖u(x)‖C(R2)

∫
|x−y|< δ0

|λ0|

|Φ(y)|µ dy ≤ ‖u(x)‖C(R2)

∫
R2

|Φ(y)|µ dy,

where µ is a number appearing in condition 2), and the convergence of numerical se-

ries
∑∞

k=1

(
|λ−λ0|
δ

)k
, we conclude from (15) that the series of analytic operator-valued

functions
∑∞

k=1K
(1)
1,λ0,k

(λ) converges uniformly on Uδ(λ0), where

K
(1)
1,λ0,k

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

H
(1)
k (λ0 |x− y|)Jk ((λ− λ0) |x− y|) Φ(y)u(y)dy, k = 1, 2, ....

The analyticity of J0 ((λ− λ0) |x− y|) on Uδ(λ0) and the asymptotics

J0 ((λ− λ0) |x− y|) ∼ 1 (|(λ− λ0) |x− y|| < δ0)

imply by virtue of (3) that the operator

K
(1)
1,λ0,0

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

G0(x, y, λ0)J0 ((λ− λ0) |x− y|) Φ(y)u(y)dy
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is analytic on Uδ(λ0). So it follows from the Weierstrass theorem on uniformly convergent

series of analytic functions that the operator-valued function K
(1)
1,λ0

(λ) =
∑∞

k=0K
(1)
1,λ0,k

(λ)
is analytic on the domain Uδ(λ0). Now let’s prove that the operator-valued function

K
(2)
1,λ0

(λ) is analytic on Uδ(λ0). Taking into account the equalities

∂

∂xj
G0(x, y, λ) =

i

4

d

d(λ |x− y|)
H

(1)
0 (λ |x− y|) λ(xj − yj)

|x− y|
, j = 1, 2,

d

dz
H

(1)
0 (z) = −H(1)

1 (z)

(see [25, p.89, Section 3.6, formula (7)]), we obtain that for every u(x) ∈ C(R2) it holds
that

K
(2)
1,λ0

(λ)u(x) = − iλ
4

∫
|x−y|< δ0

|λ0|

H
(1)
1 (λ |x− y|) < x− y, a(y) >

|x− y|
u(y)dy. (16)

Using the identities

J−k(z) = (−1)kJk(z), k = 1, 2, ...

(see [1, p.180, formula 9.1.5]),

H
(1)
1−k(z) = H

(1)
−(k−1)(z) = e(k−1)πiH

(1)
k−1(z), k = 1, 2, ...

(see [1, p.180, formula 9.1.6]),

H
(1)
k+1(z)−H

(1)
k−1(z) = −2

d

dz
H

(1)
k (z), k = 1, 2, ...

(see [1, p.182, formula 9.1.27]) and Neumann expansion (see [1, p.184, formula 9.1.75] for

|λ− λ0| < |λ0|), we rewrite H
(1)
1 (λ |x− y|) as follows:

H
(1)
1 (λ |x− y|) = H

(1)
1 (λ0 |x− y|+ (λ− λ0) |x− y|) =

+∞∑
k=−∞

H
(1)
1−k(λ0 |x− y|)Jk ((λ− λ0) |x− y|) =

H
(1)
1 (λ0 |x− y|)J0 ((λ− λ0) |x− y|) +

+∞∑
k=1

H
(1)
1−k(λ0 |x− y|)Jk ((λ− λ0) |x− y|) +

+∞∑
k=1

H
(1)
k+1(λ0 |x− y|)J−k ((λ− λ0) |x− y|) = H

(1)
1 (λ0 |x− y|)J0 ((λ− λ0) |x− y|) +
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+∞∑
k=1

e(k−1)πiH
(1)
k−1(λ0 |x− y|)Jk ((λ− λ0) |x− y|) +

+∞∑
k=1

H
(1)
k+1(λ0 |x− y|)(−1)kJk ((λ− λ0) |x− y|) =

H
(1)
1 (λ0 |x− y|)J0 ((λ− λ0) |x− y|) +

+∞∑
k=1

(−1)k
[
H

(1)
k+1(λ0 |x− y|)−H

(1)
k−1(λ0 |x− y|)

]
Jk ((λ− λ0) |x− y|) =

H
(1)
1 (λ0 |x− y|)J0 ((λ− λ0) |x− y|) +

2
+∞∑
k=1

(−1)k+1dH
(1)
k (λ0 |x− y|)
d(λ0 |x− y|)

Jk ((λ− λ0) |x− y|) . (17)

Substituting the expansion (17) into the integral (16), we have

K
(2)
1,λ0

(λ)u(x) =

− iλ
4

∫
|x−y|< δ0

|λ0|

H
(1)
1 (λ0 |x− y|)J0 ((λ− λ0) |x− y|)

< x− y, a(y) >

|x− y|
u(y)dy+

iλ

2

∫
|x−y|< δ0

|λ0|

{
+∞∑
k=1

(−1)k
dH

(1)
k (λ0 |x− y|)
d(λ0 |x− y|)

Jk ((λ− λ0) |x− y|)

}
< x− y, a(y) >

|x− y|
u(y)dy.

Taking into account the asymptotic formulas (13) and

d

dz
H

(1)
k (z) ∼ i

π

k!2k

zk+1
(0 < arg z < π, |z| < δ0), k = 1, 2, ...,

we obtain

dH
(1)
k (λ0 |x− y|)
d(λ0 |x− y|)

Jk ((λ− λ0) |x− y|) ∼
i

πλ0 |x− y|

(
λ− λ0
λ0

)k
, k = 1, 2, .... (18)

Taking into account the inequalities∣∣∣∣∣ i

πλ0 |x− y|

(
λ− λ0
λ0

)k∣∣∣∣∣ < 1

π |λ0| |x− y|

(
|λ− λ0|

δ

)k
, k = 1, 2, ...,
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|< x− y, a(y) >|
|x− y|

1

π |λ0| |x− y|
≤ 1

π |λ0|
|a(y)|
|x− y|

,

∣∣∣∣∣
∫
|x−y|< δ0

|λ0|

a(y)

|x− y|
u(y)dy

∣∣∣∣∣ ≤
‖u(x)‖C(R2)

{∫
|x−y|< δ0

|λ0|

|a(y)|ν dy

} 1
ν
{∫
|x−y|< δ0

|λ0|

1

|x− y|p
dy

} 1
p

≤

Cδ0,λ0,p ‖u(x)‖C(R2)

{∫
R2

|a(y)|ν dy
} 1
ν

,

where Cδ0,λ0,p does not depend on u(x), 1
ν + 1

p = 1, ν is a number appearing in condition

1), and the convergence of numerical series
∑∞

k=1

(
|λ−λ0|
δ

)k
, we conclude from (18) that

the series of analytic operator-valued functions
∑∞

k=1K
(2)
1,λ0,k

(λ) converges uniformly on
Uδ(λ0), where

K
(2)
1,λ0,k

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

dH
(1)
k (λ0 |x− y|)
d(λ0 |x− y|)

Jk ((λ− λ0) |x− y|)
< x− y, a(y) >

|x− y|
u(y)dy, k = 1, 2, ....

The analyticity of J0 ((λ− λ0) |x− y|) on Uδ(λ0), the asymptotics

J0 ((λ− λ0) |x− y|) ∼ 1 (|(λ− λ0) |x− y|| < δ0),

H
(1)
1 (λ0 |x− y|) ∼ −

i

π

2

λ0 |x− y|
(|λ0 |x− y|| < δ0)

and the inequality

|< x− y, a(y) >|
|x− y|

≤ |a(y)|

imply by virtue of (2) that the operator

K
(2)
1,λ0,0

(λ)u(x) =

∫
|x−y|< δ0

|λ0|

H
(1)
1 (λ0 |x− y|)J0 ((λ− λ0) |x− y|)

< x− y, a(y) >

|x− y|
u(y)dy

is analytic on Uδ(λ0). So it follows from the Weierstrass theorem on uniformly convergent
series of analytic functions that the operator-valued function
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K
(2)
1,λ0

(λ) = − iλ
4
K

(2)
1,λ0,0

(λ) +
iλ

2

+∞∑
k=1

(−1)kK
(2)
1,λ0,k

(λ)

is analytic on the domain Uδ(λ0). As λ0 ∈ C+ is arbitrary, the proof is complete.J
Denote by σ∞(C(R2)) the set of completely continuous linear operators from C(R2)

to C(R2).
Theorem 3. If the conditions 1) and 2) hold, then K(λ) ∈ σ∞(C(R2)) for every

λ ∈ C+.

Proof. Let λ ∈ C+ and S1(0) =
{
u(x) ∈ C(R2) : ‖u(x)‖C(R2)

≤ 1
}

be a unit ball in

C(R2). Let’s prove that the set

M1
λ = K(λ) [S1(0)] =

{
h(x) ∈ C(R2) : h(x) =

∫
R2

K(x, y, λ)u(y)dy, u(x) ∈ S1(0)

}
is compact in C(R2). To prove its compactness, by the corollary of the Hausdorff theorem
(see [23, p.205, Corollary 1]) it suffices to show that for every ε > 0 there exists a compact
ε-net for M1

λ . With given ε > 0, by virtue of (2) and (3) we can find a positive number δ
such that for every positive integer n and for every u(x) ∈ S1(0) the following estimates
are true:

sup
x∈R2

∣∣∣∣∣
∫
{y:|y|>n}

⋂
{y:|x−y|≤δ}

G0(x, y, λ)Φ(y)u(y)dy

∣∣∣∣∣ < ε

4
, (19)

sup
x∈R2

∣∣∣∣∣
∫
{y:|y|>n}

⋂
{y:|x−y|≤δ}

(∇G0(x, y, λ) · a(y))u(y)dy

∣∣∣∣∣ < ε

4
. (20)

After having chosen δ that way, using conditions 1), 2) and property 40 (see Proposition in
Section 2), we now choose a positive integer n0(ε) great enough to satisfy the inequalities

sup
x∈R2

∣∣∣∣∣
∫
{y:|y|>n0(ε)}

⋂
{y:|x−y|>δ}

G0(x, y, λ)Φ(y)u(y)dy

∣∣∣∣∣ < ε

4
, (21)

sup
x∈R2

∣∣∣∣∣
∫
{y:|y|>n0(ε)}

⋂
{y:|x−y|>δ}

(∇G0(x, y, λ) · a(y))u(y)dy

∣∣∣∣∣ < ε

4
(22)

for u(x) ∈ S1(0). From the inequalities (19)-(22) it follows that for every u(x) ∈ S1(0)

sup
x∈R2

∣∣∣∣∣
∫
|y|>n0(ε)

K(x, y, λ)u(y)dy

∣∣∣∣∣ < ε. (23)

From (23) it follows that the set

M1
λ,ε =

{
hε(x) =

∫
|y|≤n0(ε)

K(x, y, λ)u(y)dy, u(x) ∈ S1(0)

}
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is an ε-net for M1
λ . The relations (2) and (3) imply that the functions from M1

λ,ε are
uniformly bounded and equicontinuous. Consequently, by Arzela theorem (see [23, p.207,
Theorem 1]), M1

λ,ε is compact. Theorem is proved.J
The obtained results allow using Fredholm theory in the study of spectral properties

of two-dimensional magnetic Schrödinger operator. The author plans to consider these
issues in one of his next works.
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