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1. Introduction

The classical Morrey spaces Ly, y were originally introduced by Morrey in [40] to study
the local behavior of solutions to second order elliptic partial differential equations. For
the properties and applications of classical Morrey spaces, we refer the readers to [40, 45].
In [6], Chiarenza and Frasca showed the boundedness of the Hardy-Littlewood maximal
operator, the Riesz potential and the Calderén-Zygmund singular integral operator in
these spaces. The boundedness of the Riesz potential was originally studied by Adams [1].

On the other hand, in harmonic analysis it is very important to study weighted es-
timates for these operators. On the weighted L, spaces, the boundedness of operators
above was obtained by Muckenhoupt [41], Mukenhoupt and Wheeden [42], and Coif-
man and Fefferman [4]. Recently, Komori and Shirai [34] introduced the weighted Morrey
spaces LP"(w) and studied the boundedness of some classical operators such as the Hardy-
Littlewood maximal operator and the Calderén-Zygmund operator on these spaces. Also,
Guliyev [22] first introduced the generalized weighted Morrey spaces M%¥ and studied
the boundedness of the sublinear operators and their higher order commutators gen-
erated by Calderén-Zygmund operators and Riesz potentials in these spaces (see also
[23, 24, 25, 26, 43]). Note that Guliyev in [22] gave a concept of generalized weighted
Morrey space which can be considered as an extension of both ME¥ and LP*(w).

Multilinear Calderén-Zygmund theory is a natural generalization of the linear case.
The first work on the class of multilinear Calderén-Zygmund operators was done by Coif-
man and Meyer in [5]. Later this class was comprehensively studied by Grafakos and
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Torres in [14, 15, 16]. As is well known, multilinear fractional integral operators were
first studied by Grafakos [12], followed by Kenig and Stein [33], Grafakos and Kalton [13].
In 2009, Moen [39] introduced weight function Ay, and obtained weighted inequalities
for multilinear fractional integral operators. More results of the weighted inequalities for
multilinear fractional integral and its commutators can be found in [2, 46, 47].

Let R™ be an n-dimensional Euclidean space and (]R")m =R" x...xR"™ be an m-fold
product space (m € N). We denote by S(R") the space of all Schwartz functions on R"
and by §’(R") its dual space, the set of all tempered distributions on R"™. Let m > 2 and
T, be an m-linear operator initially defined on the m-fold product of Schwartz spaces and
taking values in the space of tempered distributions,

Tp : S(R) x ... x S(R") — S'(R™).

For x € R" and r > 0, we denote by B(z,r) the open ball centered at = with a radius
r, and by BB(Z‘,T) we denote its complement. Let |B(z,7)| be the Lebesgue measure of
the ball B(z,r). We denote by f the m-tuple (fi, for- s fm)s T = (W1,--- yn) and
d? = dy; - - - dy,,. Following [14], for given [ we say that T}, is an m-linear Calderén-
Zygmund operator if for some ¢i,...,¢m € [1,00) and ¢ € (0,00) with 1/¢ = >"}" | 1/q,
it extends to a bounded multilinear operator from Lq, (R™) X ... x Lg,, (R™) into Lq(R™),
and if there exists a kernel function K(z,y1,...,yn) in the class m-CZK(A,¢), defined

away from the diagonal t =y; = ... =y, in (R”)mH such that
Ton(F)(@) = Tl fi. for- - i) (@)
:/( ) K(xaylaw'aym)fl(yl)"'fm(ym)dyldy2'--dym (1)

whenever fi, fo,..., fm € S(R") and = ¢ N ;suppfr. We say that K(z,y1,...,ym) is a
kernel in the class m-CZK(A,¢), if it satisfies the size condition

m
—mn
K@) <A e —ml)
k=1

m+1
for some A > 0 and all (z,y1,...,ym) € (R") with x # y, for some 1 < k < m.
Moreover, for some ¢ > 0, it satisfies the regularity condition

Az —2a'f

m mn+e
(3 Iz —wl)
k=1

whenever 2|z — /| < max |z — yi|, and also for each fixed k with 1 <k <m,
m

|K(l‘ayl7“'aym) _K($,7y1>"'7ym)| <

A lye — yil°

m mn—+e’
(2 Iz —wl)

k=1

|K(x7y17"'7yk7”'7ym)_K(q"ayl)"wy;ga”'vym)’ S
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whenever 2|y — y,| <  max |x — yg|. In recent years, many authors have been interested
m

in studying the boundedness of these operators on function spaces, see e.g. [13, 29, 37, 38].
In 2009, the weighted strong and weak type estimates of multilinear Calderén-Zygmund
singular integral operators were established in [36] by Lerner et al. New, more refined
multilinear maximal function was defined in [21] to characterize the class of multiple A
weights.

Theorem A ([36]) Let m > 2 and T, be an m-linear Calderdn-Zygmund operator. If
Ply- -, Pm € (1,00) and p € (0,00) with 1/p =37 1/py, and & = (wy, ..., wn,) satisfies
the Al—g condition, then there exists a constant C > 0 independent of f = (f1, fo, -, fm)
such that

1T ()l < C T il o)
=1

where vy = [[1%, wf/pi.

Theorem B ([36]) Let m > 2 and T, be an m-linear Calderén-Zygmund operator.
If p1s.-,pm € [L,00), min{py,....pm} = 1 and p € (0,00) with 1/p = 35,% 1/px,
and W = (wi,...,wpy) satisfies the A}—g condition, then there exists a constant C' > 0

independent 0f7 = (f1, fo, .-, fm) such that

1T ) lwry o) < C T 16l o

i=1

where vy =[]~ wf/pi.

The multilinear theory has been well developed in the past twenty years. In 1992,
Grafakos [11] studied the following multilinear integrals:

@) = [ e =0 fu (o= 09)dy,
where 6;(i = 1,...,m) are fixed distinct and nonzero real numbers and 0 < 5 < n. He
proved that the operator I is bounded from Ly, (R™) x ... x L, (R™) to Ly(R"™) with
0<1/qg=1/pr+ ...+ 1/pym — B/n < 1, which can be considered as an extension result
for the classical fractional integrals on Lebesgue spaces. In [20, 21] some O’Neil type in-
equality was proved for dilated multi-linear convolution operators, including permutations
of functions. This inequality was used to extend Grafakos’s result [11] to more general
multi-linear operators of potential type and the relevant maximal operators.

Let ? € Léof(R”) X .. X Liﬁi (R™). The multi-sublinear maximal operator M,, and
multi-sublinear fractional maximal operator M, ,, are defined by

m

Myn(7) () = sup L

] i(yi)|dy;,

m

o 1
Ma7m7 x) = sup |B(z,r)|» / fi(yi)|dy;, 0<a<nm.
(7360 =suplte: 1 1L ey [y, 00
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In 1999, Kenig and Stein [33] studied the following multilinear fractional integral:

Ia,m(?xl') = / fl(yl) — fm(ym) dyy...... AYm.

(R7)™ ‘(.% — Y1y, T — ym)|nm—a

They showed that I, is bounded from product L,, (R") x ... x L, (R"™) to Ly(R"™) with
1/¢=1/p1+ ...+ 1/pm — B/n > 0 for each p; > 1(i = 1,...,m). If some p; = 1, then
I m is bounded from L, (R"™) x ... x L, (R") to WLy(R"), where W L4(R™) denotes
the weak L,-space of measurable functions on R". Obviously, the multilinear fractional
integral operator I, ,,, is a natural generalization of the classical fractional integral operator
I, = I,;. For this operator, Moen [39] obtained two weighted L, - L, estimates and a
Coifman type inequality, generalizing the results of [7] and [44] to multilinear context. As
a consequence of the two weighted inequalities, he obtained a generalized version of the
well known characterization proved in [42]. He also obtained weighted weak and strong
inequalities for the multi-sublinear fractional maximal operator M ,.

For the boundedness properties of multilinear fractional integrals on various function
spaces, we refer the reader to [13, 30, 31, 32, 46, 48]. In 2009, Moen [39] considered the
weighted norm inequalities for multilinear fractional integral operators and constructed
the class of multiple Al—gﬂ weights (see also [2]).

Theorem C ([2, 39]) Let m > 2,0 < a <mn, 1/g =1/p— a/n and I, be an
m-linear fractional integral operator. If pi,...,pm € (1,00), 1/p = >0t 1/pk, 1/q =
1/p—a/n and & = (wy, ..., wy) satisfies the Az . condition, then there exists a constant

C > 0 independent of? = (f1, fay- -+, fm) such that

Vom(Dllzawarny < CTLl, @

=1

where vy = [ w;.

Theorem D ([2, 39]) Let m > 2, 0 < a < mn ,1/q = 1/p — a/n and I, be
an m-linear fractional integral operator. If pi,...,pm € [1,00), min{pi,...,pm} = 1,
1p =371 1/pe, 1/g=1/p—a/n and @ = (wi, ..., w,) satisfies the Al—gﬂ condition,

then there exists a constant C' > 0 independent of? = (f1, fo,- -, fm) such that

Vom(DllwLowarn < €Tl @

=1

where v = [~ w;.

Recently, Wang and Yi [49] established the boundedness properties of multilinear
Calderon-Zygmund operators and multilinear fractional integrals on products of weighted
Morrey spaces with multiple weights.

Theorem E ([49]) Let m > 2 and T, be an m-linear Calderdn-Zygmund operator. If
Pls---Pm € (1,00) and p € (0,00) with 1/p=>"}" | 1/p, and W = (wy,...,wy) satisfies
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the A?; with w1, ..., Wy, € Ax, then for any 0 < k < 1, there exists a constant C' > 0
independent of? = (f1, fo, .-, fm) such that

m
1T Pty ey < C TT il
i=1
where vy = [[1%, wf/pi.
Theorem F ([49]) Let m > 2 and T, be an m-linear Calderén-Zygmund operator.
If pi,...,pm € [1,00), min{p1,...,pm} =1 and p € (0,00) with 1/p = >, 1/pk, and
= (wy,...,wn) satisfies the Az with wy, ..., wm € As, then for any 0 < k <1, there

exists a constant C' > 0 independent of 7 = (f1, fo,- -, fm) such that

m
e raRes | [FI TR
i=1
where vy =[]~ wf/pi.
Theorem G ([49]) Let m > 2,0 < a <mn, 1/q¢=1/p—a/n and I, be an m-linear
fractional integral operator. If p1,...,pm € (1,00), 1/p=>"7"11/pk, 1/qg =1/p—a/n and
W = (w1, ..., wy) satisfies the A?g with wi', ..., wk" € Aw, then for any 0 < k < p/q,

there exists a constant C' > 0 independent 0f7 = (f1, fo, -, fm) such that
Mo (P zgntmy < CTLILL,, .ty
i=1

where vz = [~ w;.

Theorem H ([49]) Let m > 2, 0 < a < mn, 1/qg = 1/p — a/n and Iom be an
m-linear fractional integral operator. If p1,...,pm € [1,00), min{p1,...,pm} =1, 1/p
S 1k, /g =1/p—a/n and @ = (wy, ..., wn) satisfies the A?,q with wi', ..., wi

m |l

Aso, then for any 0 < k < p/q, there exists a constant C' > 0 independent of ?
(f1, f2y-- -, fm) such that

e D)lw gy < CT 1fill ., .ty

i=1
where vy = [ w;.

The main purpose of this paper is to establish the boundedness properties of multilinear
Calderén-Zygmund operators, multilinear fractional integrals and their commutators on
products of generalized weighted Morrey spaces with multiple weights.

We now formulate our main results.
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Theorem 1.1. Let m > 2 and T,, be an m-linear Calderdn-Zygmund operator. Let also
D1,y Pm € (1,00) and p € (0,00) with 1/p = S0 1/p, W = (wy, ..., wy) satisfy the
A—P> with wi, ..., Wy € As, and @k = (Pk1s-- -, Pkm), k = 1,2 satisfy the condition

1

oo €ss inf H?il e1i(x, s)wi(B(z, s)) P dt
/ f<s<00 ~ T 7 5 ¥2 ($7 ’I"), (2)
r Hi:l wi(B(l‘,t))pi

m
where o3 = T] 2.
i=1
Then the operator T, is bounded from product space My, o, (wi)X...xX Mp, o (wy) to

M, 5, (V). Moreover, there exists a constant C > 0 independent of 7 = (f1, fay- -y fm)
such that

1T Py, ) < C T Millngy o
i=1

p/Di
A

where vy = 2 w
Theorem 1.2. Let m > 2 and T,, be an m-linear Calderdn-Zygmund operator. Let also
Pl Pm € [1,00) and p € (0,00) with 1/p = 37" 1/pk, and @ = (w1, ..., wn) satisfy
the Ap with wi, ..., wm € Ao, Ok = (Pk1,-- -, Pkm), k = 1,2 satisfy the condition (2).
If at least one of the p; = 1, then the operator T, is bounded from product space

My, o (w1) X ... X My, o (W) to WMy o, (vg). Moreover, there exists a constant C' > 0
independent of ? = (f1, fo,. -, fm) such that

1T )l aty oy < CTT 16N aty o

i=1

/i
AR

where vy = 12 w
k—1

Remark 1.1. Note that if p1i(z,r) = @oi(x,7) = wi(B(z,r)) 7 and w; € Ax, i =

1,...,m, 0 < k <1, then (@1, p2) satisfies condition (2), and from Theorems 1.1 and 1.2

we get the Theorems E and F, respectively. Also, in the unweighted case Theorems 1.1

and 1.2 were proved in [27].

Remark 1.2. Note that in the case m = 1 the Theorems 1.1 and 1.2 were proved in [22],
while in the unweighted case they were proved in [19], see also [17, 18].

Theorem 1.3. Let m > 2, 0 < a < mn, 1/q¢ = 1/p — a/n and I, be an m-linear
fractional integral operator. Let also pi,...,pm € [1,00), 1/p = >0 1/pk, 1/q =

m

1/¢i = 1/p—a/n, W = (wi,...,wn) satisfy the A  with w?, ..., wi € A, and
) Py 1
K]

<p:k = (Qk1y---»Prm), k= 1,2 satisfy the condition

t<s<oo <

o ess Inf [T oui(e,5) (w] (Bl ) g,
/ m . T T wa(z, ). (3)
" Hizl (w;h(B(iL‘,t))) 4
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Then the operator In m is bounded from product space My, o (W) X ... X My, o (wpi™) to

M, o, ((v)?). Moreover, there exists a constant C > 0 independent of? = (f1, fo, -y fm)
such that

Hfa,m(7)HMq,¢2((ua»)q) < CH 1 fillag,, o, Py

i=1

where vz = [~ w;.

Theorem 1.4. Let m >2,0<a <mn, 1/g=1/p—a/n and 1, be an m-linear frac-
tional integral operator. If pi,...,pm € [1,00), min{p1,...,pm} =1, 1/p = >, 1/py,
1/qg = 1/p—a/n, W = (wi,...,wn) satisfies the A?,q with wi', ... wl' € Ax and
(@1,...,%9m, ) satisfies the condition (3), then the operator In , is bounded from prod-
uct space My, o (W) X ... X M, o (wh*) to WM, ,,((v5)%). Moreover, there exists a

constant C > 0 independent of 7 = (f1, fo,-., fm) such that

Vom(Ollwaty e < € TLil, o ey

i=1

where vy = [ w;.

Remark 1.3. Note that if ¢1(z,7) = @oi(z,7) = wi(B(x,r))nT_l and wi' € Ay for
i=1,...,m,0<k <1, then (¢1,p2) satisfies condition (3), and from Theorems 1.8 and
1.4 we get the Theorems G and H, respectively. Also, in the unweighted case Theorems
1.3 and 1.4 were proved in [28].

Remark 1.4. Note that in the case m = 1 the Theorems 1.3 and 1.4 were proved in [22],
while in the unweighted case they were proved in [19], see also [17, 18].

2. Notations and definitions

By a weight function (briefly weight), we mean a locally integrable function on R”
which takes values in (0,00) almost everywhere. For a weight w and a measurable set
E, we define w(E) = [pw(x)dz, and denote the Lebesgue measure of E by |E| and
the characteristic function of E by x,. Given a weight w, we say that w satisfies the
doubling condition if there exists a constant D > 0 such that for any ball B, we have
w(2B) < Dw(B). When w satisfies this condition, we write briefly w € As.

The classical A, weight theory was first introduced by Muckenhoupt in the study of
weighted L, boundedness of Hardy-Littlewood maximal functions in [41]. A weight w is
a nonnegative, locally integrable function on R™, B = B(xg,rp) denotes the ball centered
at zo with a radius rg. For 1 < p < oo, a weight function w is said to belong to the
Muckenhoupt class A, [41], if

[w]a, : = S%P[M]AP(B)
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(b i) i )

where the sup is taken with respect to all the balls B and % + z% = 1. Note that, by

Hoélder’s inequality, for all balls B

1 1

Jils) = 1B el w7l ) 2 1. (4)

For p = 1, the class A; is defined by the condition Mw(x) < Cw(x) with [w]a, =
Muw(z)

w(x)

[w »(B) — 1(B) [Jw™

sup
zeR"
A weight function w belongs to the Muckenhoupt-Wheeden class A, , [42] for 1 <

p,q < oo if

;and for p =00, As = U1cpeoo 4p and [w]a,, = 1§i}171<foo[w],4p.

(w]a,, = S%P[W]Ap,q(B)

ey )y )

where the sup is taken with respect to all balls B. Note that, by Holder’s inequality, for
all balls B

11 B
[wla, ) = [BIP "7 wlp,m lw L, @ > 1. (5)
P

Forp=1,wisin A, with 1 < ¢ < oo if

wlay, : = suplula,

1 1/ 1
_ q
sup <|B\ / w(z) d:1:> <es§€s;1p w(a:)) < 00,

where the sup is taken with respect to all balls B.

Remark 2.5. [9, 12] If w € A, , with 1 < p < g < oo, then the following statements are
true:

(a) w? € Ay witht =1+ q/p’.

(b) w™ € Ay witht' =1+p/q.

(c) we Agp.

(d) wP € Ag with s =14 p/q'.

(e) w7 € Ay with s =1+4¢'/p.

Lemma 2.1. (]9, 12]) (1) Ifw € A, for some 1 < p < oo, then w € Ay. Moreover, for
all A >1
w(AB) < X'"P[w] 4, w(B).

(2) Ifw € Ax, then w € Ag. Moreover, for all A > 1

w(AB) < A" [w] a, w(B).
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(3) Ifw e Ay for some 1 < p < oo, then there exist C > 0 and 6 > 0 such that for
any ball B and a measurable set S C B,

w(S) 1ST°

—=<Cl—=) .
w(B) — <\B|>

Lemma 2.2. ([8]) Let w € As. Then for all balls B C R™, the following reverse Jensen

inequality holds:
1
/ w(z)dr < C|B|-exp </ w(a:)dx) .
B 1Bl Jp

Lemma 2.3. ([36]) Let p1,...,pm € [1,00) and p € (0,00) with 1/p ="}~ 1/px. Then
W= (w1,...,wy) € Az if and only if

{ v € Amp,

1-p! .
.t EAmp;, 1=1,...,m,

w;

P/Di

L. 1-p} . .
where vz = [, w;'"", and the condition w; Pi e Ay in the case p; = 1 is understood

1
as wi/m € A

Lemma 2.4. ([2, 39]) Let 0 < a < mn, p1,...,pm € [1,00), 1/p = > 1t 1/pk and
1/¢g=1/p—a/n. Then W = (wi,...,wy) € Al—gq if and only if

IJ% € Amyg,
w;pi EAmp;, 1=1,...,m,
where v = [~ w;.
Now let us recall the definitions of multiple weights. For m exponents p1, ..., pm, we

will write ? for the vector ? = (p1,..-,Pm). Let p1,...,pm € [1,00) and p € (0,00)
with 1/p = 3270, 1/pg. Given W = (wy, ..., wn), set vy = [, wf/pi. We say that
satisfies the A? condition if it satisfies

1 1/p m 1 - 1/p(i
sup | — | v dm) (/ w;(z pidx) < 00.
o (a1 [,ee) 1 (i /e

=1
/

/ 1/p; | . _
When p; = 1, (ﬁ I3 wi(;,;)l—l’idq;) is understood as (inf,ep w;(x))
Let p1,...,pm € [1,00), 1/p = > 7", 1/py and ¢ > 0. Given W = (wi,...,wy), set
vg = [, w! /P We say that u satisfies the A3 . condition if it satisfies

(1 /. T wtertar)
sup | — | v dx) </ w;(x idw) < 00.
s \IBlJp ® E 1Bl Jp

/

/ 1/p;
When p; = 1, (ﬁ I wi(ac)pidx) " is understood as (inf e p wi(x)).
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Lemma 2.5. ([49]) Let m > 2, p1,...,pm € [1,00) and p € (0,00) with 1/p => ;" 1/ps.

Assume that wy, ..., wy € Ax and v = [[2 1wp/pl

constant C > 0 such that

. Then for any ball B, there exists a

n p/Pi
H(/ w;(x da;) <C/ vgdz.

=1

Lemma 2.6. ([49]) Let m > 2, q1,...,qm € [1,00) and q € (0,00) with 1/q =>"}" | 1/qx.
Assume that wi', ..., wl" € A and vy = [/, w;. Then for any ball B, there exists a
constant C > 0 such that

m

11 </B w?(w)dw)m < C/Bu%d;p.

i=1

3. Generalized weighted Morrey spaces

Given a weight function w on R", the weighted Lebesgue space Ly(w) for 0 < p < oo
is defined as the set of all functions f such that

£l 2wy = (/Rn !f(x)!pw(x)dm>l/p < o0.

We denote by W L,(w) the weighted weak space consisting of all measurable functions
f such that

| fllw ) = iggt cw({x e R : |f(x)| > t})l/p < 0.

In the study of local properties of solutions to partial differential equations, Morrey
spaces M, »(R"™), as well as weighted Lebesgue spaces, play an important role (see [10],
[35]). Introduced by C. Morrey [40] in 1938, they are defined by the norm

1flla,, = sup 7 ”Hf||L,,(B(x )

z, r>0
where 0 < A <n, 1 <p<oo.

We also denote by WM, y the weak Morrey space of all functions f € WL})OC(R”) for
which

2
Ifllwag,, = sup 7 2 [ fllwe, () < oo
’ z€R™, r>0

where W L,, denotes the weak L,-space.

In 2009, Komori and Shirai [34] introduced the weighted Morrey spaces L, ,(w) for
1 < p < oo. In order to deal with the multilinear case m > 2, we shall define L,, ,(w) for
all 0 < p < o0.
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Definition 3.1. Let 0 < p <00, 0 < k < 1 and w be a weight function on R™. Then the
weighted Morrey space is defined by

Ly(w) = { € () : | £l1, ) < o0}

where

=su ! z)[Pw(x)dx w
e e AL

and the supremum is taken over all balls B in R™.

Definition 3.2. Let 0 <p <00, 0 < k < 1 and w be a weight function on R™. Then the
weighted weak Morrey space is defined by

WLy .(w) = {f measurable : || fllwr,..(w) < oo},

where

t-w({zeB:|f(z)>tH/P.

1
Il ey sy = supsup 2

Furthermore, in order to deal with the fractional order case, we need to consider the
weighted Morrey spaces with two weights.

Definition 3.3. Let 0 < p < 00 and 0 < k < 1. Then for two weights u and v, the
weighted Morrey space is defined by

Ly 0) = {f € L) < 1 1, ) < 0

where

1 1/p
g =50 (e [Pt )

In 2011, Guliyev [22] introduced the generalized weighted Morrey spaces M, ,(w). In
order to deal with the multilinear case m > 2, we shall define M, ,(w) for all 0 < p < occ.

Definition 3.4. Let 1 < p < oo, ¢ be a positive measurable function on R™ x (0,00) and
w be a non-negative measurable function on R™. We denote by M, ,(w) the generalized
weighted Morrey space, the space of all functions f € L;,‘jfu(R") with finite norm

1
1ty o) = sup (@) w(B(@,r) "2 | fllr, .wB):
z€R™,r>0

where Ly ,(B(x,r)) denotes the weighted L,-space of measurable functions f for which

1
P
1ALy (B = 1 X s Lpw@®e) = </B !f(y)|pw(y)dy> :

(zr)
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Furthermore, by WM, ,(w) we denote the weak generalized weighted Morrey space of
all functions f € WLPS (R™) for which

_1
1 fllw s, (w) = Sw oz, m)  w(B(@,r) 7 | flweywBer) <00

where W Ly, ,(B(z,1)) denotes the weak Ly, .,-space of measurable functions f for which

1w Lpw(Bar) = 1 Xpm WLy w®e) = S;;lgf ~w({y € Blz,r): |f(y)] > tH'/P.

Remark 3.6. (1) Ifw =1, then My (1) = M, is the generalized Morrey space.
r—1
(2) Ifp(x,r) =w(B(x,r)) » , then My ,(w) = Ly .(w) is the weighted Morrey space.
K 1
3) If o(x,r) = v(B(x,r))rw(B(z,r)) », then My (w) = Ly.(v,w) is the two
weighted Morrey space.
A—n
(4) Ifw=1and p(xz,r) =r 7 with 0 < X\ < n, then My, (w) = L, x\(R") is the
classical Morrey space and W My, ,(w) = WLy, z(R") is the weak Morrey space.
1
(5) If o(x,r) = w(B(z,r)) », then My (w) = Lp,(R™) is the weighted Lebesgue
space.

Throughout this article, we will use C' to denote a positive constant, which is indepen-
dent of the main parameters and not necessarily the same at each occurrence. Besides,
we will denote the conjugate exponent of p > 1 by p’ =p/(p —1).

4. Multilinear Calderon-Zygmund operators in the product spaces
My, oy (w1) X oo X M, o (W)

We are going to use the following result on the boundedness of the Hardy operator

(Ho)0) = 1 [ ar)dulr). 0<t <o,

where p is a non-negative Borel measure on (0, 00).

Theorem 4.5. ([3]) The inequality

ess supw(t)Hg(t) < cess supv(t)g(t)
>0 >0

holds for all functions g non-negative and non-increasing on (0,00) if and only if

w(t) [t dpu(r)
/0 %8 upvs)

A :=sup

< 0
>0 t ’

and c = A.
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In this section, we will prove the boundedness of multilinear Calderén-Zygmund ope-
rators on product generalized weighted Morrey space. First we prove the following theo-
rem.

Theorem 4.6. Let m > 2 and T,, be an m-linear Calderon-Zygmund operator. If
Py Pm € (1,00) and p € (0,00) with 1/p =7 1/pg, and W = (wy, . .., wy,) satisfies
the Al—g with w1, ..., Wy, € As, then the inequality

1[5 1 dt
HTm(?>HLP,VE)(B(I7T)) Svg(B(z,r))r /2 H HfiHLpi’wi(B(r,t)) w;(B(x,t)) » " (6)
Toi=1

holds for any ball B(z,r) and for all ? € Lloc (R™) x ... x Ll¢ —(R").

p1,w1 Pm,Wm

Proof. Let 1 < p1,...,pm < oo and 1/p = 1/py + -+ 1/py,. For arbitrary x € R,
set B = B(x,r) for the ball centered at z with a radius r, 2B = B(x,2r). We represent

7:(f1,...,fm) as
fj:fjo_‘_ffo? f]O:ijQBa f]oo:ijC(QB)’ ]Zlaam (7)

Then we write

m

H filys) = H (f2(wa) + (i)
i1

=1

= > ) - f ()
By sBm €{0,00}

=T17°w)+ > ). o (ym),
i=1 B1s-,8m

where each term in Z/ contains at least one 3; # 0.

Since T}, is an m-linear operator, we split Tm(7) as follows:

’

T < ol T2 £+ 3 Tt £ ).
Bis-sBm

where (1,...,m € {0,00} and each term in Z/ contains at least one 3; # 0. Then,

1T (P B2y < WT(FLs o S ey (o)

/

1Y Tl F ) Ly (B
/817"'7/3’"L
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In view of Lemma 2.3, we have vy € Ap,p. Applying Theorem A, Lemma 2.5 and
Lemma 2.1, we get

-

TP 0) < T T, i

m

m
STy, vy S TT ALy, v, (B@2r)-
=1 =1

On the other hand, from Lemma 2.5 we have

ﬁHfz‘HLpl w; (2B) =~ ’B\mﬁ”fz’”Lpi,wi@B) /;Owiil

<ipp [ Hufzu% o (Blo) i 0
w;(B )p%Hw_l/piHLp;(B) /OOHH]C”LPZ.,W(B(x,t))t:fL

[ ZHlezLM L P

1 dt
i, wB)% [ Hmwu,,sz ey wi( Bz, 1)) 7 T

A
3

@
Il
=

A
s
5

s
Il
—

N

@
I
—

1

~ vy (B)r /QT H ||fz||LpZ w; (B(w, t))'le( (x,t)) »i -

i=1

”3

where vg (B)YP = [, w;(B)"/?i. Thus

1 (e n _1.dt
0Ty ot S v (B [ TLUA by ey Bl 0) 7
Toi=1

For the other terms, let us first deal with the case when g1 =--- = f3,,, = c©
When |z —y;| <, |2 — yi| > 2r, we have |z —y;| < |z —y;| < 3|z — y4], and therefore,

ITm(fi"’,...,fo)(Z)\S/(CB( )" T 'fl(yl)'”fm(ym)’|mnd7

T—Yly ey @ — Ym)

/ H | fi(yi)| A
’L
EB (z 2r) i— |x —Yi ‘n

and

o0 o0 fiyi)|
||Tm(f1 oo 7f )HLP Vﬁ B(z,r)) = / H ‘| Z’n dy; ||XB(J:,T)||Lp7Vm(Rn)

B(x 2r
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< v (Bl ) /( H|'f”” "

l’—yl|"

By Fubini’s theorem we have

|fz yz / s > dt
Yi = ” fi(yi —dy;
/ B (z2r) H L - uln! (°B(w.2r)) g| () jo—gs| 17
oo 1 dt
~ fi(yi)ldyi—=
/27“ ll:I /2r<x—yi|<t ‘ ( ’ g+l

/ / ’fz Yi ‘dyzthrl
2r =1

Applying Hélder’s inequality, we get

|f’L y’L /p dt
AEB12T H |$_y|n Zf\-// HHleLplw mt)”w ||L (B(a:t tn+1
1 1dt
< H“’Z 1/,91/ H”fZ”Lp wi(Bla,t)) Wi(B(z, 1)) 7 == (10)

Moreover, for all p; € [1,00), i = 1,...,m the inequality
| T (£, 5 fa) Ly, Vﬁ B(x,r)
L odt

Sva(B)t [ HHfZHL,,w oy wil B, 1) 7 % (1)

is valid.

We now consider the cases when exactly [ of the ;’s are oo for some 1 <1 < m. We
only give the arguments for one of these cases. The rest are similar and can easily be
obtained from the arguments below by permuting the indices. To this end we may assume
that 81 = ... =, =00 and fj11 = ... = B = 0. Recall the fact that |x — y;| = |z — v
for z € B(x,r), y; € GB(ac,Qr) and 1 <i <[. We have

T (£, J20 flers oo f) ()]

</ / 1) - o (ym) | Y
~J(%B@en) J(Baen)" T (o=l + .+ =)™

<r7(mfl)n / ‘fl(yl)fl(ym”dyldyl
: (%52m)! (12— 1]+ + o — g™

. /(B(xzr))"” |f1(Wis1) - fon(Ym) | dyisq - - - dym
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|fz yz n(m—l) /‘ m
d v m— i\Yi d 7.
/BB(MT 1H1|$_y’|n v (Bz2n)" H iwldy

i=l+1

Applying Holder’s inequality, we get

’fz yz / —1/pi dt
/ _ le—yl” b < Hufzuww 7 e (5o ot
l 1/pz 1/p; &Y dt
sz HHszLplwl (e,t)) Wi( B2, )7/ (12)
and
r m— i\Yi)|QY;
(B(x,ZT)) : i:lql
i —1/p; & dt
S | QP o Py v
i=l+1 T
dt
< / (LT ol P
r = I+1
1/1’2 1/pi 2% dt
[wil 4, H 1Ly, o, (Bat)) wi(B(, 1))~ (13)
i= l+1 i=l+1

From (12) and (13) we get

HTm(flooa'--afloo>flo+1ﬂ"'a O)HLPV_>(B(.Z‘T‘))
Svg(B(a,r Up/ /ilys) dy; T"(ml)/ _o i) | dy;
BBED fo ) Hu—w (02 1)

_1/p, dt
< v BN [ TTM Ny ataay B0 &
r =1

Thus we get the following inequality:

’

> Tl 1 "My (Blr)

O 1y, dt
SB[ TL1 by ey (Bl ) 7
To=1

Consequently, the inequality (15) is valid.«



120 V. S. Guliyev, M. N. Omarova

Theorem 4.7. Let m > 2 and T,, be an m-linear Calderon-Zygmund operator. If
Piy--,Pm € [1,00), min{pi,...,pm} = 1 and p € (0,00) with 1/p = >}, 1/px, and
= (w1,...,wy) satisfies the Ag with wy, ..., wy € Ao, then the inequality

1 _1dt
(T 300 S v Bz} [ H 1l 5oy i B, ) 70 S (1)
=1
holds for any ball B(z,r) and for all ? € Léofwl (R™) x ... X Léﬁrf’wm (R™).
Proof. For any ball B = B(z,7) C R", decompose f; = f0 + f*° , where f0 = fixas,
2B = B(z,2r),i=1,...,m. Then for any given A > 0, we can write

va({y € Blar): [Tu(F)w)| > 2})?
v ({y € B(a,r) : |Tn(£0,. .., £2) ()| > Aj2"})*

/

+Zuﬁ({y € B(z,r): ‘Tm( 151,..., ,%”)(y)| > )\/2m})%

/

04 3 e,

where each term in ZI contains at least one 3; # 0. By Lemma 2.4 again, we know that
v € App. Applying Theorem B, Lemma 3.1 and Lemma 2.1, we have

T Wy By < (TP, 0
ST, v @ =TTy, v, (B@2r)-
i=1 i=1

In the proof of Theorem 1.1, we have already shown the validity of the following
estimate (see (3.1) and (3.3)):

T (f- - ﬁm)lle B(z.r)

’ _adt
Svg(B E /2 H HfHLpz w; (B(x,t)) wi(B(x,t)) i -
=1

[un

Then

DI I N a8 hL, r[?@m)HWLp,,,B(B(z,T))

< S ITmlf ﬁm)”prﬂ; B(a.r))
1 dt

Sva(Bn)t [ HufnL,,H ey (B2, 0) .
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Remark 4.7. Note that in the case m = 1 the Theorems 4.6 and 4.7 were proved in [22],
while in the unweighted case they were proved in [19], see also [17, 18].

Now we prove the boundedness of multilinear Calderén-Zygmund operators on product
generalized weighted Morrey space.

Proof of Theorem 1.1. Let 1 < pi,...,pm < oo and 7 € Mp, o (w1) x ... %
M, om(Wrm). By Theorems 4.5 and 4.6 we have

_1
1T (Pt sy = 500 () (Bl ) % (TPl B0

z€R™, r>0

< sw pler) / HHfZHL By wil B ) L

zER™, >0 Pi t
rot m a1 dt
= Ssu $ 7' 1 w P; —
el / Tl ey s Bt~

_ 1
S sup H@u “wi(B, )P |l Ly, (B

zeR™ r>01 1

| | ) ! ( ( ) 1 H HL B(x
sup (pl T, T w; (B xT,r) Pi f - ws ,
rER™ T‘>0/L 1 z Z " Z( ( T))

= H 1 fillat,, o, (1)
i=1

Now we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let p1,...,pm € [1,00), min{p1,...,pm} =1, p € (0,00) with
1/p=>3",1/p, and 7 € My, o (w1) X ... X My, o (wy). By Theorems 4.5 and 4.7 we
have

_1
TPyt = 500 olar) ™ s (BG ) T ()l ey

_L1dt
< swp e /Hufzuw ooy wi B, ) &

zER™ r>0
= s (o) / 1ﬁ|f‘uL Boa-1y wiBla, 1) &
z€R™, r>0 ’ 0 . pi’wi( (@, ) t
_ 1
rg sup H@lz wl(B('%Uril)) Pi Hf”Lpi,wi(B(x,r*l))

z€R™ r>0" im1

| | ) ! ( ( ) 1 || || T,7
sup Scl €T, 1 w;(B Z,T Pill L, w,; (B(x,
zER™ 1 >“Z 1 ! ! P> 7‘( ( ))

= H 1 fillady, o, ()
=1
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By using Holder’s inequality, it is easy to verify that if each w; is in A, then

ﬁ Ap, CAp

i=1

and this inclusion is strict (see [36]). Thus, as direct consequences of Theorems 1.1 and
1.2, we immediately obtain the following

Corollary 4.1. Let m > 2 and T,, be an m-linear Calderon-Zygmund operator. If
Pls---Pm € (1,00) and p € (0,00) with 1/p =>";", 1/px, W = (wi,...,wm) € [[1 Ay,
and (1, - - ., ©m, ) satisfies the condition (2), then the operator T,, is bounded from prod-
uct space My, o, (w1) X ... X Mp, o (wn) to My ,(vg). Moreover, there exists a constant

C > 0 independent of? = (f1, fo, -, fm) such that

1T )ty sy < CTT il o)
i=1

P/Di
AR

where vz = [[I2, w

Corollary 4.2. Let m > 2 and T,, be an m-linear Calderon-Zygmund operator. If
Pls---Pm € [1,00), min{p1,...,pm} =1 and p € (0,00) with 1/p = >}, 1/pg, W =
(wi,...,wm) € [[it, Ap, and (p1,...,¢m, @) satisfies the condition (2), then the oper-
ator Ty, is bounded from product space My, o (w1) X ... X My o (W) to WM, ,(v).

Moreover, there exists a constant C' > 0 independent of 7 = (f1, fo, -, fm) such that

1T D) lwnty sy < CTT1Filnty o

=1

D/ Di
i .

where vz = [[I2, w

5. Multilinear Riesz potential operators in the product spaces
My, o (wr) X oo X My, o (W)

In this section, we will prove the boundedness of multilinear Riesz potential operators
on product generalized weighted Morrey space. First we prove the following theorem.

Theorem 5.8. Let m > 2, 0 < o < mn, 1/qg = 1/p — a/n and 1,,, be an m-linear
fractional integral operator. If pi,...,pm € (1,00), 1/p = > 1ty 1/pk, 1/¢i = 1/pi —
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af/(nm), 1/¢=1/p—a/n and & = (w1, ..., wy) satisfies the Ap , with wi, .. wl €
A, then the inequality

Sl

1 . _1d
HIa,m(?)”Lq,@ﬁ)q(B(x,r)) S V%( €, 7“ q / H HfZ”L _wai(B(z,t)) w;h(B(x7t)) ?
(15)
holds for any ball B(z,r) and for all ? € Li)‘;c o (R?) x ... x Lee , (R™).
YWy

Pm,Wm

Proof. Let p1,...,pm € (1,00), 1/p =331 1/pk, 1/¢=1/p — a/n. Arguing as in the
proof of Theorem 4.6, fix a ball B = B(x,r) C R" and decompose f; = f0 + f?° , where
Y= fixep, 2B = B(z,2r),i=1,...,m. Since I, is an m-linear operator, then we split

Iom(f) as follows:

Lam(FY®)] < am(Fs - 1900 + | S Lm0
B1,--,Bm

where B1,...,Bm € {0,00} and each term in Zl contains at least one 3; # 0. Then,

0 0
||Ia,m(?)||Lq7y%(B(x,r)) < |Mam(fis-- - fm)HLW% (B(zr))

’

+ Y L, m (L ,...,fﬁm)HLyq Bla,r)
5,
617-~~7Bm

< J04 Y P,

In view of Lemma 2.3, we have (v3)? € Apng. Applying Theorem B, Lemma 2.6 and
Lemma 2.1, we get

o), o 8w < Mo (Ol o
rw Yw
<11 HinHLpi’wm ey STI il o (Ba2r)-
i=1 : i=1 v

On the other hand, from Lemma 2.6 we have

_a o dt
HufzuL e =BT om [ s
=1 r
_a dt
<ip(-%) [ H||fz||L,pl<B<m)tana (16)

m dt
S ITor B o ey H||fz||L, B
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m
dt
Squz( / H||fz||Lpz wy (Bt lw™ /pl”L V) Tt la
i=1 2r =1
S H 14 Wl (Bl 0)) % &
~ L il Ap;q; W o ¢ Lpi,wfi(B(z,t)) i ’ t
1= 1=
_1.dt
~v(B) / T 15, ey (Bt s %,
=1
where v (B) = [[", wi(B). Thus
o 4 e [ O o _1dt
10 SV (B(a, )Y/ /2 T, sy Wb (B ) 5 (17)
i=1 ‘
For the other terms, let us first deal with the case when g1 =--- = 3, = c©

When |z —y;| <, |z —y;| > 2r, we have 5|z —y;| < |z —yi| < 3|z — y;], and therefore,

a5 F22)2) 5/(EBW))W o

s !fi(yz')\ ,

and

oo oo ’fl yl )
”Ia,m(fl o f )HL (,,B)q z,r)) = ADB(xQT H ‘LU— |n oz/m yz HXB(x,T)HLq,uTJ(Rn)

’fz yz )
H ‘SL’ _ |n a/mdyl'

< VA (B, 1)1 /

l':B(z 21"

By Fubini’s theorem we have

|fi(yi)] / /OO dt
| I — ———dy; = 3 () | dy; =
/B(wr o — gifnerm Y (B(mQT))MHV il | TFI—a/m

dt
~/2r ZI:I \/2r<|;tyi|<t | ( )’ tntl—a/m

dt
5 fz yi)|dy; ——
/r =1 /B m t | )| thrl a/m

Applying Holder’s inequality, we get

| fi (i) . dt
/ o) H Ly p-arm dyi S 1_[1Hfi|Lpi,wfi(B(a:,t)) [|w; HLp;(B(wJ))tn_HT/m
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. _1/g dt
< [T TT0, ey ot B 2, (15)
i=1 ¢

where 1/p; — 1/q¢; =a/m,i=1,...,m
Moreover, for all p; € [1,00), 1/p; —1/¢; = a/(nm), i =1,...,m the inequality

Ham (£ -5 Fa)llz, @B Ja(B(z1))
1/, dt
< B [ TIIN, L oceay e (Ble, 0o (19)
=1

is valid.

We now consider the cases when exactly [ of the §;’s are oo for some 1 <[ < m. We
only give the arguments for one of these cases. The rest are similar and can easily be
obtained from the arguments below by permuting the indices. To this end we may assume
that 81 = ... = ;= o0 and fj41 = ... = B = 0. Recall the fact that |z — y;| = |z — v
for z € B(x,r), y; € CB(:U,QT) and 1 <14 <[. We have

‘Ia,m(ffoa .. ')flooafl(lrla N 7f7(’)n)(z)‘

~ (EB({L‘,QT’)>Z (B(:v 2r )m : (|IL' - yl‘ .ot |‘T - yl’)mnfa
< r(m—l)(n—a)/ \fl(yl)---fz(ym)!dw-..dyz
- J:27") (

|z —yi] + ...+ [z — )i

X / m—1 |f1(yl+1)"'fm(ym)|dyl+1~'-dym
(B(:z:,2r))
l

<T1J, PR T v [ ol
=1 B(z 2r) ’.1‘ - | imlt1 B(z,2r)

Applying Hélder’s inequality, we get

|fz yz / ) dt
! 2B)H|$ Ly r[1|rfz|rLWfi(B(m,mHw Iz, (3609 i

. o0 ) g dt
gH[wi]z/:fqi / anuLp,wm(B(x,t)) Wl (B, 1) Yo T (20)
i=1 Toi=1 R

and

pocn(m-—) /( o)™ IT 1fitw)ldys

i=l+1

o0 dt
H I fill ot (B(,20) |w; HL B(z,2r)) /2 =i
i=l+1 ¢ T
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_ dt

S/ H £z, i (B s 1"Lp4(B(x,t))m (21)

r = I+1 T ¢
1/pz q 1/(12‘ dt

< H 1Az Wi (Bt) W i (Bz, )" —.

i= l+1 i=l+1 o
From (20) and (21) we get
||I05 m(ffoa ce 7floo7 flq‘,—:[? T 7f7(‘]n)||Lp (anq(B(:D,T))
< vi(B wrlMII/ T | iy T
(z,2r) |$ - ’ i=l+1
B(z,2r)

1/q. dt
SPNCCRILE B | (PR e

i=1

Theorem 5.9. Let m > 2,0 < a<mn, 1/q¢=1/p—a/n and 14y, be an m-linear frac-

tional integral operator. If pi,...,pm € [1,00), min{p1,...,pm} =1, 1/p = >, 1/py,
1/qi = 1/pi — of(nm), 1/q = 1/p — a/n and @ = (wi,...,wp) satisfies the A—P>q with

wi, .. wl € Ao, then the inequality

; v _1dt
Hfa,m(?)||WLq,<Vﬁ>q(B(x,r)) v “/ HHfiHLp_wpi(B(x,t))wgl(B(%t)) "
=1 o
(22)

Pm,Wm

holds for any ball B(xz,r) and for all ? € L;"IC p (R?) x ... x Loc , (R™).
, Wy

Proof. For any ball B = B(z,r) C R", decompose f; = fzo + £, where fZO = fix2B,
2B = B(z,2r),i=1,...,m. Then for any given A > 0, we can write

v ({y € B(z,7) : [T 1)) > A1)
<8 ({y € Blar) : [Tl £2)w)] > A/27 1)
8 ({y € Bla,r) : |[Tam(F5, -, fE) ()] > A/2m 1)

=J)+ Z JPrrebm,

where each term in Z/ contains at least one 3; # 0. By Lemma 2.4 again, we know that
(v#)? € Apyg. Applying Theorem B, Lemma 3.1 and Lemma 2.1, we have

JB = H—[a,m(f%)HWLq (l,l_l)))q(B(xr) < H—[a m(ﬁ)‘|WLq7(uﬁ)q(R”)

SHHszHLp_,w Rn) = HHszLV Wi (Ba2r)-
i=1
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In the proof of Theorem 1.1, we have already shown the validity of the following
estimate (see (3.1) and (3.3)):

am(f7 o ﬁm)!\Lq@ﬁ)q( B(a.r))
S (va) (Bl [ H||f|rL Bl W (B )0
Then
ORI S Mmoo S W15
<Z|!Iam fﬁm)HLq(yﬁ)qw(w,r»

. dt
1 i —1/q
< (v (B, )V / Zr[1||f|eri,wfi(B(m,t>>w3<B<az,t>> Ly

Now we give the boundedness of multilinear fractional integral operator on product
generalized weighted Morrey space.

Proof of Theorem 1.8. Let pi,...,pm € (1,00), 1/p = >0 1/pk, 1/qi = 1/p; —
a/(nm), 1/g = 1/p — a/n and 7 € My, o (w1) X ... x My, o, (wy). By Theorems 4.5
and 5.8 we have

_1
HIoc,m(?)HMq,@((uﬁ)q): sup  p(z, ) 'L (B(x,r)) qHfa,m(?)HLq,wq(B(z,r))

Z‘ER" r>0
S s pla) IH/ 153l 3wy w8 (Bl )) %
z€R™, r>0 T L
= s o) 1H/ 1530, taty W (Bt )
zER™, r>0 Wy t
N ﬁ sup rie,r™) b (Bla,r ) 7w | £, v (Bzr—1))
. leRn r>0 Py

. _ 1
= H sup (plz(x T) lwfz(‘B('xaT) Pi HfHLp,,wPi(B(va'f))

i=1 zeR™,r>0

= H Hfi”Mpiml,(w )
i=1

Now we turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. Let p1,...,pm € [1,00), min{p1,...,pm} =1, p € (0,00) with
I/p=> 1 ,1/prand f € My, o (w1) X ...xX M, o (wy). By Theorems 4.5 and 5.9 we
have

_1
Vo (Fllwaty oy = 51 la,r) v (Bla,r) qHla,m(?)IIWLq,wq(B(:c,r»

z€R™, r>0
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, _1dt
< sw plar) IH / 1Al oy i (Bl 1) S

zeR™,r>0

. =L dt
= s ) IH / 1Al o amry (Bl ™) 7o

z€R" r>0

m

—1\-1, pi S
ST swp eulae,r ™ )l (B, r ™) % IflL (@)
=1 z€R™,r>0 Py

m

) _ 1
= H sup (pli(x,T‘)il’prl(B(aZ,’l“)) Pi HfHL ~ p; (B(z,r))
. lzeR" r>0 Pi,w;

—HHfZHMM .

By using Holder’s inequality, it is easy to verify that if each w; is in A, 4,, then

m

H Apia; C A?g

i=1

and this inclusion is strict (see [36]). Thus, as direct consequences of Theorems 1.3 and
1.4, we immediately obtain the following

Corollary 5.3. Let m > 2, 0 < a < mn and I, be an m-linear fractional integral
operator. If p1,...,pm € (1,00), 1/p =371 1/pk, 1/qi = 1/pi — oo/(nm), 1/q = 1/p —
a/n, W = (wi,...,wm) € T2, Ap,qi and (p1,...,0m, ) satisfies the condition (3),
then the operator Io m, is bounded from product space My, o (W) X ... X M, o (wh*) to

My (we)o)-
such that

Moreover, there exists a constant C' > 0 independent of f = (f1, f2y---, fm)

Ve () laty ooy < C T 1 ill s, o, ?):

=1

where vz = [~ w;.

Corollary 5.4. Let m > 2, 0 < a < mn and I, be an m-linear fractional integral
operator. If p1,...,pm € [1,00), min{p1,....,pm} =1, 1/p=> 11 1/pk, 1/qi = 1/pi —
af/(nm), 1/¢=1/p—a/n, W = (wi,...,wm) € 12 Ap,qs and (1,..., ¢m, @) satisfies
the condition (3), then the operator Lo, is bounded from product space My, o, (W) X...x
My, o (WhT) to WMy, ((v3)?). Moreover, there exists a constant C' > 0 independent of

= (f1, f2,- - fm) such that

M () laty ooy < C T 1 ill s, o, ?):

=1

where vy = [ w;.
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