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Abstract. In this paper we obtain results on symmetric and concircular symmetric Lorentzian
para-Sasakian (briefly LP-Sasakian) manifolds with respect to quarter-symmetric metric connec-
tion and Riemannian connection.
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1. Introduction

The idea of semi-symmetric linear connection on a differentiable manifold was intro-
duced by Friedmann and Schouten [5]. Further, Hayden [7], introduced the idea of metric
connection with torsion on a Riemannian manifold. In [25], Yano studied some curva-
ture conditions for semi-symmetric connections in Riemannian manifolds. In [6], Golab
defined and studied quarter-symmetric connection in a differentiable manifold with affine
connection. After that various properties of quarter-symmetric metric connection have
been studied by many geometers like Rastogi ([16], [17]), Mishra and Pandey [12], Yano
and Imai [26], De and Sengupta [4], Pradeep Kumar, Venkatesha and Bagewadi ([14],
[15]), and many others.

M. M. Tripathi [19] studied the semi-symmetric metric connection in a Kenmotsu
manifolds. In [20], the semi-symmetric non-metric connection in a Kenmotsu manifold
was studied by M. M. Tripathi and N. Nakkar. In [1], Amit Prakash and Dhruwa Narain
studied quarter symmetric non-metric connection in Lorentzian para-Sasakian manifolds.
Also in [21], M. M.Tripathi proved the existence of a new connection and showed that
in particular cases, this connection reduces to semi-symmetric connections; even some of
them are not introduced so far. On the other hand, there is a class of almost paracontact-
metric manifolds, namely Lorentzian para-Sasakian manifolds. In 1989, K. Matsumoto [8]
introduced the notion of Lorentzian para-Sasakian manifold. Then I.Mihai and R. Rosca
[11] introduced the same notion independently and they obtained several results on this
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manifold. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto
and I. Mihai [9], U. C. De et al.,[4], A.A. Shaikh and S. Biswas [18], M. M. Tripathi and
U. C. De [22].

A linear connection ∇̃ in an n-dimensional differentiable manifold is said to be a
quarter-symmetric connection [6] if its torsion tensor T is of the form

T (X,Y ) = ∇̃XY − ∇̃YX − [X,Y ] = η(Y )φX − η(X)φY, (1)

where η is a 1-form and φ is a tensor field of type (1, 1). In particular, if we replace
φX by X and φY by Y , then the quarter-symmetric connection reduces to the semi-
symmetric connection [5]. Thus, the notion of quarter-symmetric connection generalizes
the idea of semi-symmetric connection. And if quarter-symmetric linear connection ∇̃
satisfies the condition (∇̃Xg)(Y, Z) = 0 for all X,Y, Z ∈ X (M), where X (M) is the Lie
algebra of vector fields on the manifold M, then ∇̃ is said to be a quarter-symmetric metric
connection.

In this paper we study the geometry of LP-Sasakian manifolds with respect to quarter-
symmetric metric connection. However these manifolds have been studied by many ge-
ometers like K. Matsumoto [8], K. Matsumoto and I. Mihai [9], I. Mihai and R. Rosca
[11], I. Mihai, A.A. Shaikh and U.C. De [10], Venkatesha and C.S. Bagewadi [23] and they
obtained several results on this manifold.

2. Preliminaries

An n-dimensional differentiable manifold M is called an LP-Sasakian manifold ([8],
[11]) if it admits a (1, 1) tensor field φ, a contravariant vector field ξ, a 1-form η and a
Lorentzian metric g which satisfy

η(ξ) = −1, (2)

φ2X = X + η(X)ξ, (3)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (4)

g(X, ξ) = η(X), (5)

∇Xξ = φX, (6)

(∇Xφ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ, (7)

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g.

It can be easily seen that in a LP-Sasakian manifold, the following relations hold:

φξ = 0, η(φX) = 0, rankφ = n− 1. (8)

Again, if we put

Φ(X,Y ) = g(X,φY ), (9)
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for any vector fields X and Y , then the tensor field Φ(X,Y ) is a symmetric (0, 2) tensor
field [8]. Also, since the 1-form η is closed in an LP-Sasakian manifold, we have ([8], [10])

(∇Xη)(Y ) = Φ(X,Y ), Φ(X, ξ) = 0, (10)

for any vector fields X and Y.
Also in an LP-Sasakian manifold, the following relations hold ([9], [10]):

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (11)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (12)

R(X,Y )ξ = η(Y )X − η(X)Y, (13)

S(X, ξ) = (n− 1)η(X), (14)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (15)

for any vector fields X,Y and Z, where R is the Riemannian curvature tensor and S is
the Ricci tensor of M .

Definition 1. An LP-Sasakian manifold M is said to be symmetric if

(∇WR)(X,Y )Z = 0, (16)

for all vector fields X,Y, Z and W.

Definition 2. An LP-Sasakian manifold M is said to be φ-symmetric if

φ2(∇WR)(X,Y )Z = 0, (17)

for all vector fields X,Y, Z and W .

Definition 3. An LP-Sasakian manifold M is said to be concircular symmetric if

(∇W C̄)(X,Y )Z = 0, (18)

for all vector fields X,Y, Z and W , where C̄ is the concircular curvature tensor and is
given by [24]

C̄(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (19)

for any vector fields X,Y and Z, where R and r are the Riemannian curvature tensor and
scalar curvature respectively.

Definition 4. An LP-Sasakian manifold M is said to be concircular φ-symmetric if

φ2(∇W C̄)(X,Y )Z = 0, (20)

for all vector fields X,Y, Z and W .
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3. Expression of R̃(X, Y )Z in terms of R(X, Y )Z

In this section we express R̃(X,Y )Z the curvature tensor w.r.t quarter-symmetric
metric connection in terms of R(X,Y )Z the curvature tensor w.r.t Riemannian connection.

Let ∇̃ be a linear connection and ∇ be a Riemannian connection of an almost contact
metric manifold M such that

∇̃XY = ∇XY + U(X,Y ), (21)

where U is a tensor of type (1, 1). For ∇̃ to be a quarter-symmetric metric connection in
M, we have [6]

U(X,Y ) =
1

2
[T (X,Y ) + T

′
(X,Y ) + T

′
(Y,X)] (22)

and

g(T
′
(X,Y ), Z) = g(T (Z,X), Y ). (23)

From (1) and (23), we get

T
′
(X,Y ) = η(X)φY − g(X,φY )ξ. (24)

Using (1) and (24) in (22), we obtain

U(X,Y ) = η(Y )φX − g(X,φY )ξ.

Thus the quarter-symmetric metric connection ∇̃ in an LP-Sasakian manifold is given by

∇̃XY = ∇XY + η(Y )φX − g(X,φY )ξ. (25)

Hence (25) is the relation between Riemannian connection and the quarter-symmetric
metric connection on an LP-Sasakian manifold.

A relation between the curvature tensor of M with respect to the quarter-symmetric
metric connection ∇̃ and the Riemannian connection ∇ is given by

R̃(X,Y )Z = R(X,Y )Z + g(X,φZ)φY − g(Y, φZ)φX

+ [η(X)g(Y, Z)− η(Y )g(X,Z)]ξ (26)

+ [η(Y )X − η(X)Y ]η(Z),

where R̃ and R are the Riemannian curvatures of the connections ∇̃ and ∇, respectively.
From (26) it follows that

S̃(Y, Z) = S(Y,Z) + (n− 1) η(Y )η(Z), (27)

where S̃ and S are the Ricci tensors of the connections ∇̃ and ∇, respectively.
Contracting (27), we get

r̃ = r − (n− 1), (28)

where r̃ and r are the scalar curvatures of the connections ∇̃ and ∇, respectively.
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4. Symmetry of LP-Sasakian manifold with respect to
quarter-symmetric metric connection

Analogous to the definition of symmetric LP-Sasakian manifold with respect to Rie-
mannian connection, we define a symmetric LP-Sasakian manifold with quarter-symmetric
metric connection by

(∇̃W R̃)(X,Y )Z = 0, (29)

for all vector fields X,Y, Z and W .
Using (25), we have

(∇̃W R̃)(X,Y )Z = (∇W R̃)(X,Y )Z + η(R̃(X,Y )Z)φW − g(W,φR̃(X,Y )Z)ξ

− η(X)R̃(φW, Y )Z − η(Y )R̃(X,φW )Z − η(Z)R̃(X,Y )φW (30)

+ g(W,φX)R̃(ξ, Y )Z + g(W,φY )R̃(X, ξ)Z + g(W,φZ)R̃(X,Y )ξ.

Now differentiating (26) with respect to W and using (6), (7) and (10), we obtain

(∇W R̃)(X,Y )Z

= (∇WR)(X,Y )Z − [η(Y )g(W,Z) + η(Z)g(Y,W ) + 2η(Y )η(Z)η(W )]φX

+ [η(X)g(W,Z) + η(Z)g(X,W ) + 2η(X)η(Z)η(W )]φY

+ g(X,φZ)[g(W,Y )ξ + η(Y )W + 2η(W )η(Y )ξ]

− g(Y, φZ)[g(W,X)ξ + η(X)W + 2η(W )η(X)ξ]

+ [g(W,φX)g(Y, Z)− g(W,φY )g(X,Z)]ξ (31)

+ [η(X)g(Y, Z)− η(Y )g(X,Z)]φW

+ [g(W,φY )X − g(W,φX)Y ]η(Z)

+ g(W,φZ)[η(Y )X − η(X)Y ].

Using (2), (8) and (31) in (30), we obtain

(∇̃W R̃)(X,Y )Z = (∇WR)(X,Y )Z. (32)

Therefore, we can state the following:

Theorem 1. An LP-Sasakian manifold is symmetric with quarter-symmetric metric con-
nection ∇̃ if and only if it is so with respect to Riemannian connection ∇.

Corollary 1. An LP-Sasakian manifold is φ-symmetric with respect to quarter-symmetric
metric connection ∇̃ if and only if it is so with respect to Riemannian connection ∇.
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5. Concircular symmetry of LP-Sasakian manifold with respect to
quarter-symmetric metric connection

An LP-Sasakian manifold M is said to be a concircular symmetric with respect to
quarter-symmetric metric connection if

(∇̃W
˜̄C)(X,Y )Z = 0, (33)

for all vector fields X,Y, Z and W, where ˜̄C is the concircular curvature tensor with respect
to quarter-symmetric metric connection given by

˜̄C(X,Y )Z = R̃(X,Y )Z − r̃

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (34)

where R̃ is the Riemannian curvature tensor and r̃ is the scalar curvature with quarter-
symmetric metric connection ∇̃.
Using (25), we can write

(∇̃W
˜̄C)(X,Y )Z = (∇W

˜̄C)(X,Y )Z + η( ˜̄C(X,Y )Z)φW − g(W,φ ˜̄C(X,Y )Z)ξ

− η(X) ˜̄C(φW, Y )Z − η(Y ) ˜̄C(X,φW )Z − η(Z) ˜̄C(X,Y )φW (35)

+ g(W,φX) ˜̄C(ξ, Y )Z + g(W,φY ) ˜̄C(X, ξ)Z + g(W,φZ) ˜̄C(X,Y )ξ.

Now differentiating (34) with respect to W, we obtain

(∇W
˜̄C)(X,Y )Z = (∇W R̃)(X,Y )Z − ∇W r̃

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ]. (36)

By making use of (28) and (31) in (36), we get

(∇W
˜̄C)(X,Y )Z)

= (∇WR)(X,Y )Z − [η(Y )g(W,Z) + η(Z)g(Y,W ) + 2η(Y )η(Z)η(W )]φX

+ [η(X)g(W,Z) + η(Z)g(X,W ) + 2η(X)η(Z)η(W )]φY

+ g(X,φZ)[g(W,Y )ξ + η(Y )W + 2η(W )η(Y )ξ]

− g(Y, φZ)[g(W,X)ξ + η(X)W + 2η(W )η(X)ξ] (37)

+ [g(W,φX)g(Y, Z)− g(W,φY )g(X,Z)]ξ

+ [η(X)g(Y, Z)− η(Y )g(X,Z)]φW + [g(W,φY )X − g(W,φX)Y ]η(Z)

+ g(W,φZ)[η(Y )X − η(X)Y ]− ∇W r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ].

Taking account of (19), we rewrite (37) as

(∇W
˜̄C)(X,Y )Z

= (∇W C̄)(X,Y )Z − [η(Y )g(W,Z) + η(Z)g(Y,W ) + 2η(Y )η(Z)η(W )]φX
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+ [η(X)g(W,Z) + η(Z)g(X,W ) + 2η(X)η(Z)η(W )]φY

+ g(X,φZ)[g(W,Y )ξ + η(Y )W + 2η(W )η(Y )ξ]

− g(Y, φZ)[g(W,X)ξ + η(X)W + 2η(W )η(X)ξ]

+ [g(W,φX)g(Y,Z)− g(W,φY )g(X,Z)]ξ (38)

+ [η(X)g(Y,Z)− η(Y )g(X,Z)]φW

+ [g(W,φY )X − g(W,φX)Y ]η(Z)

+ g(W,φZ)[η(Y )X − η(X)Y ].

Using (2), (8) and (38) in (35), we get

(∇̃W
˜̄C)(X,Y )Z = (∇W C̄)(X,Y )Z. (39)

Hence we can state the following:

Theorem 2. An LP-Sasakian manifold is concircular symmetric with respect to ∇̃ if and
only if it is so with respect to Riemannian connection ∇.

Corollary 2. An LP-Sasakian manifold is concircular φ-symmetric with respect to ∇̃ if
and only if it is so with respect to Riemannian connection ∇.

Now taking (2), (8) and (37) in (35), we get

(∇̃W
˜̄C)(X,Y )Z = (∇WR)(X,Y )Z − ∇W r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ]. (40)

If scalar curvature r is constant then (40) reduces to

(∇̃W
˜̄C)(X,Y )Z = (∇WR)(X,Y )Z. (41)

Hence we can state the following:

Theorem 3. An LP-Sasakian manifold is concircular symmetric with respect to quarter-
symmetric metric connection ∇̃ if and only if it is symmetric with respect to Riemannian
connection ∇, provided r is constant.

Corollary 3. An LP-Sasakian manifold is concircular φ-symmetric with respect to quarter-
symmetric metric connection ∇̃ if and only if it is symmetric with respect to Riemannian
connection ∇, provided r is constant.
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