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On The Partially Large Solutions For Semilinear Hyper-
bolic Systems With Damping

A. B.Aliev*, A. A . Kazymov

Abstract. In this paper we study existence of global solution for semilinear systems of hyperbolic
equations with damping. Note that one component of the solution can be arbitrarily large, while
another component is sufficiently small.
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1. Introduction

We consider the Cauchy problem for the following system of semilinear hyperbolic
equations

Ut + ury + (= 1) Aty = i (ug, ug) (1)
Uyt + U2t + (—1)l2 Aluy = fo(ug,ug) [’

with initial data

u1 ( ) 1 (), wui, (0,2) =1 (x),
2(2), up, (0,7) = ey (2) } L€ RY, (2)

where ¢ € R,
filur, ug) ~ uf uf®. (3)

The problem of the existence of global solutions of the Cauchy problem for semilinear
hyperbolic equations with the condition (3) is the subject of numerous studies [1-9]. In
these works, as well as in [10], initial data are quite small.

We assume that fi(uq,us) and fa(uq,ug) are continuous differentiable functions, and

[fi (w, )| < bful ]2, b >0, (4)

where
szZO, ka:1727 (5)
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2 .
Pi1+Pi2>ﬁ, i=1,2, (6)

7

pil pi2 2 ri
—+—; i=1,2; 7
l1m1 lgmg N + my ! ( )

ri = max {r (1,12, pi1, piz, ms) ;7 (I2, 1, pi2s pin,ma) }

1 2
) a2_7 5207
m

a
r(a,b,a, B,m) =

mo 2 — mo 2
— 0< — 0;
2a+ 2b _a<m’ﬁ>’

1=1,2.

We also assume that
2min(ll,12) > N. (8)

In [9] it is proved that under conditions (4)—(8) the problem (1), (2) has a global solution for
"sufficiently small” initial data (¢;,1;) € (H%(RN)N L1 (RN)) x (Ly(RN)NLy(RN)), i =
1,2.

In this article we will investigate the global solvability of (1),(2) for arbitrary initial
data (i, ;) € (HY(RN) N Ly, (RN)) x (La(RN) N Ly, (RY)), 1 <m; < 2,0 = 1,2 and
rather small £ € R under the assumptions (4)-(8) and

p12 >0, pag > 1. 9)

In other words, the initial data are arbitrary with respect to one variable and “suffi-
ciently small” with respect to the other.

2. Preliminaries and statement of the results

In the sequel, by [|-||,, we denote the usual Ly(RY)-norm. For simplicity we write |-||
instead of |[|-]|5.

We denote by C ([0,T]; H' (R™)) the space of all continuous functions u : [0,7] —
H' (RN) with

Hu”c([o,T];Hl(RN)) =mazlu(l, ) [|g(ry), 1 =0,1,...,
and by C* ([0,T]; Ly (R™)) the space of all differentiable functions u : [0,7] — Lo (R")
with
lullero,r1:La(ryy) = Nulloqornaryy) + 14 oo r):00(RY )
In addition, we denote C ([0,00);Hl (RN)) = TUOC ([O,T];Hl (RN)), and
>

Cct ([O,oo);L2 (RN)) = Tgo ct ([O,T];Lg (RN)). The purpose of this work is to prove

the following result.
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Theorem (Main results). Suppose that the assumptions (4)—(9) are satisfied, and
(is 1) € (H"(RY) 0 Ly, (RY)) % (La(RY) N Lyn, (RY)), i = 1,2 (10)

where m; € [1,2]. Then there exists g > 0 such that, if 0 < e < g then the problem (1),
(2) has a unique solution

u = (u1,us) € C ([o,oo) LHY (RN x Hl2(RN)) N C ([0,00); Ly (RY) x Ly(RN)) .

Note that for every My > Myg = b1 E1(¢1,%1) and My > Msy = by Es(p2,12), the
number €9 > 0 is selected so that the following estimates are valid

S ID%u (6] € Mieo) (L6 T, k= 0,1l (1)
|o|=k

[Juit (¢, )| < Mi(eo) (L+1)77". (12)
Here
M1(€) = Ml, Mg(e) = €M2,

Eilpi ) = Vo] + il + lill + Iillm, + [46ilmis

1

N - § . .
fyl-:min{1+7(mi 2) N s~ ik —Q},izl,z

2l; 2 Pt mili m;

The theorem will be proved by the method of successive approximations. First, let’s
state some facts about the asymptotics of solutions of the corresponding linear problem.
Let Zj(t,€), i,k = 1,2 be solutions of the following Cauchy problem

0,6) =1, Zu,(t,€) =0, i=12,

Ligu(t,f) 4
(075) = 07 Zi2t(t7£) = 17 i = 172 ’

=0, Zn
LiZp(t,§) =0, Zp
where R R R R
LiZ(t,§) = Zuy + Z; + ‘5’% Z.

We denote Zi(t,z) = F~Y(Zy)(t,z), i,k = 1,2, where F is the Fourier transform of
the functions Z(t,€), i,k = 1,2.
Lemma 1 (see [10]). Let N > 1, ¢; € H(RN) N Ly, (RY) and ¢; € Lo(RN) N

Lmi(RN), with 1 < m; < 2. Then the following estimates hold:

_ N1 _ 1
| Zin(t,x) * @i(z]] <b;j(1+1t) 2iimi 2) (il + il ) (13)
_ N1 1y 1 )
> IDZu(t,2) + eilall < b (L4072 72 (V| + el (14)

lov|=ls
N
)

IDUZin(t,2) 5 gu(@)l| < b (1402 @D (g + laill,)  (15)
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| Zio(t, )+ (]l < bs (14 )72 52 (]| + 46 l)s (16)

S 1D Zis(tw) * @) < by (148D (| + will), (A7)
|ee|=l;

1DU(Zia () * i)l < bi (1573 T D7 (| + i), (18)

where b; = const >0, 1 =1,2.

3. Proof of main results

The weak solutions of problem (1), (2) can be represented in the form

uy(t, ) = Zn(taf) * p1(z) + Zi2(t, @) * 1 (2)+
+ [ Zia(t — s,2) * fi(ui(s,x), uz(s,z))ds

P (19)
ug(t, ) = eZo1(t,x) * @a(x) + eZoa(t,x) * o(x) +
t
+ [ Zoa(t — s,2) * fa(ui(s,x), uz(s,x))ds
0 Y,
Define a function space U = Uy, (M7) x Uy, (e Ms), where M; > Mo, i = 1,2,
U, (Mi(e)) = {u cueC <[O,oo); Wh (RN)) ,
(1462 G2 flu(t, )| + (14 )3 w242 Vit )| < M)}, i =12
We define the mapping
(Ul(tax)7v2(t7x)) = \P(ul(tax)7u2(tax) )
by the following equalities
vi(t,z) = Z11(t, ) * p1(x) + Z12(t,z) * 1 (x)+
t
—|—/Z12 (t—s,x) * fr(ui(s,x),us(s,x))ds, (20)
0
va(t,x) = eZa1(t, ) * po(x) + eZoa(t, x) * Po(x)+
t
+/Z22(t—s,m) * fo(ui(s,x),us(s,z))ds. (21)
0

Lemma 2. Let the conditions (4)—(9) be satisfied. Then we can choose g9 > 0 such
that the operator ¥ maps U = Uy, (My) x Uy, (eMs) into U = Uy, (My) x Uy, (e Ms), where
0 <e<eg.
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Proof. Let
(ul,u2) ceU = Ul1 (Ml) X UIQ(EMQ). (22)

Then, from (18), (11) and (12),(21) we have

\maﬁugu+wﬁﬂﬁ“ﬁMma+
+b1 [(L+t—7) 2imi 2/ x (23)
0
<1 un (r,.), war, DI+ [ fiCaa (7. ) walr, )], Jdr

and
N1 1y 1
S 1D (1) < (14 4) 72 272 Mg (e)+

lal=l;
t _ﬁ( 1 l)_l
oy [ (Lt —7) 2imi 22 ]| fi(ua (7, ), uz(T, )| +
0

+ [ filua(r,); w2 (T, )y, A7,

where Mig(e) = Mg = b1 E1(p1,%1), Mao(e) = eMag = ebaFa(02,12).
1 1
According to (5)-(7) there exist ¢; > 1, p; > 1 such that — + — =1 and ¢;m;p;1 > 2,
Di qi
pimip; > 2,1 =1,2 (see [13], Lemma 3). Then using the Holder inequality, we obtain

1/m;
il (t, ) wn(t, ) {fhu mmhmaNmm¢§ <

Rn
<bHU1( W Gimipn 12t 5, s

Further, using the multiplicative inequality of the Gagliardo-Nirenberg type (see[11]), we

have
pi10i,1,m;

a8, )16, < ua (PO fnmd [N Doy (8, ) | : (26)

la=l;

pi105i,2,m;

K 1 1 G/L m.

lua(t, 02, 0 < luz(t, [P0 S DYus(t, )| )
|al=t;
where

N /1 1
Ot = — | = — L i=1,2, 28
sl <2 miQiPz’l) (28)

N /1 1
Oiom = — (= — L i=1,2. 29
v, <2 mz’piPm) (29)

From our assumption it follows that 0 < 6; 1, <1and 0 < 0;2,,, <1,7=1,2.
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Therefore, from (25)-(27) it follows that

lm, <

1 fi(ur(t,-), ua(t, )]

pi10i,1,m;

<b ||ug (¢,- pir(1=0,1,m;) D%uq(t, - X
< b ui (¢,) |l > [ID%ua(t, ) || (30)

la|=l;

Pil 91 2 my
NWW)WM%“”<ZHU%()0 :

|| =12

Similarly, we have

”fi(ul(t,‘),UQ(t, )) ’ <
pi10;i1,2
< b |luy(t,- pi1(1=0;,1,2) Dy (t, - %
ua(t, ) | \a|2::liH 1(t,) |l (31)

p119122
X [lua(t, ) [[Pir(1=0022) < > [[D%ua(t, ) H) :

|| =12

where N )
Oi10=—(1— L i=1,2 2
REEDTH < Qipil> ! (82)
N 1
0; (11— L i=1,2. 33
T ( pipi2> ! (33)
Using (22) in (23)-(27) and (30),(31) we obtain that
K(L_l)
(L+8)2mi 20 [u; (8, )] <
—HGE-D v EGE-D Yo a4
i [(A+t—T) o 2 (14 T)Tm (34)
0

+(1+7
N 1 1
(L4 0222 S Doy (8, )] < Miole)+
al=l;
t
+b1b (1 + t)_T(L_%H% f (1+t—1) le(m%_%)_% [(1+7)" "™ + (35)
0
+ (1 + 7.) ’Ymi] (Ml)pll (€M2)P12 dT
where N N
Yim; = it (1= 0i1.m,) 51 (e — 3) + pinbitmlar (G — 5) + 3]+
(36)

S

+pi2(1 — z,2,m)%(m%. —3) + pigbiomlar (-
I [ (o = 2) + 3+

Yiz = pir(1 — 2,1,2)2—11(,”%. — 3) + pinbine

Oi12) 3 (= — 3) + pizbinola (G — &

+pia(1 — o0
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Combining (28)-(29), (32), (33) and (36),(37), we get

N pi2 1 1
’ 2 llml l2m2 pilim;  qilamy

N Pi2 1 1 1

Yo = -5 - :
2 llml 12m2 2 \pilim;  qlom;
8) an

38),(39) that

It follows from (7), (
Yi2 > Yim, > 1, =12

It is known that (see [12]) in this case the following inequalities are true

M‘Z

L G =

N

(1+1t)%

t
I3 /(1—1—75—7-)_%(’”%‘_
0

By virtue of (34),(35) and (40),(41) we have

m|2
3

)—

=
MI»—-

7 (

(NI

(1+2)2 [(1 + 7)omi +(1+7)%2] dr < c.

(1+8)20 T2 oy ()| < Mig+bibe M{M (2My))™?

N,1 1
(14 1) 7272 [y (¢, )| < & Mag+bboc M (eMy)P?2 ,

N1 _1y.1
(L+6)2n 722 S Doy (1, )| < Mig+bibe M{™ (eM3))*2,

lorl=l1
A(L_l)_i_l
(1 _|_t)2l2 my 2 2 I ‘Zl ||DO‘U2( )H < €M20+beCMp21 (5M )Pzz ,
al=ly

We choose g9 > 0 as follows

[ (M- iz [ My — My \rm-1
0= My \ 0oy M ) \ bbye M7 ME? '

Using (9) in (44), (45), we obtain that

N 1
a7 (y —2)

l
(Lt)nom 2 flog (8] < M,

t
) / (14+t—7) % w7 [(1+47)%mi + (14 7)%2]dr =6
0
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N 1
(14237 oy (1, )| < My, (47)
N 1
(1420 G =242 S Doy (1, < My, (48)
|| =11
N 1 1
(1+)% 7 2% N7 D%y (1, )| < My (49)
la|=l2

Then (40),(41) yield that
(Ul,UQ) celU = Ull(Ml) X U12(€M2),

i.e., ¥ maps U into itself.

Therefore, we can construct the Sequence{ (ugn),ugn)) } C U as follows

(@™ ) = v, uf) ,n =0,1,2, ., (50)
where
ul” = Zuy(t,2) * o1(2) + Zialt,x) * ¥a() : (51)
ugo) =eZy(t,x) * pa(x) +eZoa(t,x) * o(x)

Now we state some a priori estimates for the sequence { (u&"),ugn)) } which follow

directly from the construction of this sequence.
Lemma 3. Let the conditions (4)—(9) be satisfied. Then for any 0 < € < gy and the

sequence {(u&"),ugn))} the following estimates hold

‘uﬁ"’ (t,") ‘ <+t (@) (52)

‘uz ( <My (1+4) Ps(7a8) (53)

3 ‘Dau1 H <y (140 (EE) (54)
|a|=l1

S e )| < can Loy (Eh)E (55)
|a|=l2

It follows from (20), (21) and (43) that

ﬁ ¢_1>_1
oot £ 5 b
t ﬂ(L_l) 1
+b1 f(1+t—7) 21; \m; 2 [(1“‘7—) Y, +(1+7—) 'le](Ml)pzl (€M2)P12 dT
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Finally, by using the well known estimate

2

t
Py R TE R
(14 ¢)2\m (I+t—7) 2L\mi (14 7)7m + (14 7)7"2]dr <c,
0

we have the following Lemma.
Lemma 4. Let the conditions (4)-(9) be satisfied. Then for any 0 < e < gy the

sequence {(ugn),uén))} satisfies the following estimates

D™ 2,9 < dra+07, (56)

HDtugﬂ (t, )H <eMy(146)72, (57)

Next, using the embedding theorems, from (52), (57), we obtain the following result.
Lemma 5. Let the conditions (4)—(9) be satisfied. Then for any 0 < € < g¢ the

sequence {(u&"),ugn))} satisfies the following estimates

‘u§") (t,:n)‘ < 201 bEy(¢1,1) = K1, (t,x) € [0,00) x RN (58)

[u§") (1,2)] < 20202 B0, 0) = Kz, (1) € [0,00) x RY, (59)

where c; is the norm of the embedding H'(RN) c C(RN).
Now we shall prove that (ugn),ug ))} is a fundamental sequence.

Indeed, from (20)—(21) and (50) we have

Zio(t = 7,2) + [ (r,2), 8" (7,2) = fiul" D (r2), " () [ a7 <

"™ (1) = ul (2, )]

<]
[l

D) + 2w (ma) — oV ()l () + A (7, 2)

IN

zul

- (n_l)(T x) )dA <u§ )(7' x) — u&n 1)( ,a;)) | dT+

+ff

ugn_l)(T,l') _’_)\(ug )(T,LE) B ugn_l)(T,l') )d)\ (ugn)(T,.Z') — uén 1)( 7x)> ”dT

@V (r,z) + A (r,2) — " (7, 2),

zug

Taking into account (58), (59),we get

|

‘(u&")(T,x) — u&n 1) (1, )H + H( (1,2) — uén D(T,ﬂ:))‘u dr

)

u™ (1) —u ()| <

<jci[
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h O = —|— 5 ) = 1,2
where C; \§\<2K1,|n\<2K1 H ( )| | zux( 77)|] ¢

Letting

we obtain that
Wn1(t) < Ctwp(t),

where C' = Cy + Cs.
Applying this inequality repeatedly, we have
(c)"

n!

Wp1(t) <

Therefore {(u&"),ugn))} is a fundamental sequence in space C ([O,T] i Lo (RN )), for
every T' > 0.

Then, there exist the functions uqy,us € C ([O,T] i Lo (RN )) such that, ugn) — u; in
C ([0,T]; Ly (RY)), i = 1,2, for every T > 0.

In view of the *—weak compactness of bounded sets in Lo, ((0, o0); Lo (RN )), from

(52)-(57) it follows that from the sequence {(uf', u%)} we can choose a subsequence {(u&"’c ),

ug”‘))} with the following properties

ugn’“) — wu; * —weakly in Ly ((0,00);Hli (RN)) , 1=1,2, (60)
D™ — Dyu;  —weakly in Lo, ((0,00); Ly (RN)) i = 1,2. (61)
From (52) —(57) and (60), (61) it follows that
— Ll
Hul( )H<CM()(1+ZL/) it 200 =1,2,, (62)
N 1 1
S D% (8, )| < eMife) (14+6) 2 w272 =12, (63)
la|=l;

[1Dgu; (¢, )| < e Mi(e) (L+8)7", i=1,2, (64)

N(m%_%)N 2 pik T

here v; = min { 1 —
where 7y; mn + 20, ' P — s

Now we prove that the couple of functions (u1, u2) is a solution of problem (1), (2).
From (52)—(57) and (62)—(64) it follows that

fi(ugn’,uén)) - fi(ulau2)H <
1

[ i+ M = ), 4 A = ) () = e ) ) 0| <

<3

k=1

[e=]

21 (n)
S
k=1
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Therefore, for every T' > 0
fz( g"),ugn)) — fi(ul,u2) in C ([O,T] ;L2 (RN)) .

Passing to the limit in (50) we see that the pair of functions (ui,us) satisfies the
equation
(ul,U2) =v (’LL1,’LL2) . (65)

By (60), (61) and (65), we have

(ur,up) € C ([0, c0) s HY (RN) x H' (RN)) N C([0,00); Ly (RY) x Lo(RY)).

4. Analysis of conditions (4)—(9). Examples.

As stated above, the conditions (4)—(8) provide existence of global solutions with
small initial data. The assertion of Theorem becomes invalid without condition pio >
0. Indeed, if pj2 = 0, then the function fi(ui,u2) = \ullp“_l uy, where 1 < p1; <

min {211% +1, mll} , satisfies the conditions ((4) —(8). In that case the Cauchy problem

g + ug + (—1)" Ay = Jug [P g
(66)

u1(0,2) = ¢1(2), u1(0, 2) = Y1 ()

has a global solution only for ”small” Ej(p1,11) (see, for example [2]), and in general,
for "large” Ej(¢1,11) the problem (66) has no global solution (see, for example [4, 5, 13,
14]).

We give some examples satisfying the conditions (4)—(9).

a) Consider the Cauchy problem

Uiy + ur + (—1)l Alyy = uy'uy

, (67)
Ut + uze + (—1)" Alup = ukug
(%5} (07:1:) = @1 ($) , ULt (ny) = rlzz)l ($) )
.z € RN (68)

ug (0,) = epo (), ug (0,2) = ehs ()

where m, k € {0,1,...} ,[,r € {1,2,...} ;s € {2,3..}, m+r > QWl +1,k+s> QWl + 1.
The assertion of Theorem is true for problem (67)-(68), where m; = mg = 1.

b) Consider the function

filur,u2) = i1 (u1)pio(uz), ui,us € R,
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where
|Pij -1

In n, In| <1

pi | 1 7
qij

pij = lorp;; =0 ¢;; > 0,4,5 = 1,2.

%’j(ﬂ) =
_ DPij—Aqij

qij—1 I
N Y e S

Dij

It is obvious that,
|fi (w,v)| <blul’|ul’?, b>0, where p;; =min{pi;,qi;}-

Under conditions (4) —(9) the assertion of Theorem is true.
For example, if

2
Lh=1l=1, m1=m2=1,p11=Q11=0,p12=(J12=p>N+1,

2
P21 = q21 = 0,p22 = qo2 > N +1,

then the assertion of Theorem is valid.
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