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A-Statistical Supremum-Infimum and A-Statistical Con-
vergence

M. Altinok, M. Kiigiikaslan

Abstract. In this paper, the concept of A-statistical supremum (sup 4 z) and A-statistical infu-
mum (inf 4 x) for real valued sequences x = (z,,) are defined and studied. It is mainly shown that,
the equality of sup, « and inf 4  is necessary but not sufficient for to existence of usual limit of
the sequence. On the other hand, the equality of sup 4 « and inf 4  is necessary and sufficient for
to existence of A-statistical limit of the real valued sequences.
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The concept of statistical convergence is introduced by Fast and Steinhaus in [7] and
[14], respectively. The idea of this concept based on asymptotic density of the subset K
of natural numbers N (see [3]).

Over the years, by using asymptotic density some concepts in mathematics are gener-
alized.

Let K be a subset of natural numbers N and

K(n):={k : k<n, ke K}.
Then, the asymptotic density of K C N is defined by

S(K) = lim ~|K(n)|

n—oo N

if the limit exists. The symbol |K(n)| indicates the cardinality of the set K(n).
A real or complex valued sequence z = (x,,) is said to be statistically convergent to
the number L, if for every € > 0, the set

K(n,e):={k : k<n, |z — L| > ¢}
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has zero asymptotic density, i. e.,

o1
(K (n,e)) = nh_)ngo E\K(n,a)\ =0,
and it is denoted by x,, — L(S).

Let A = (anj) be a non-negative matrix. If A = (a, ) transforms all convergent
sequences to convergent sequences with the same limit, then it is called regular matrix
transformation. The theorem in (1.3.3 Theorem [13]) gives the conditions for a matrix to
be regular:

(a) There exists a constant K such that Y .~ |an x| < K for all n,

(b) For every k, lim,, o0 anr = 0,

(¢) limy 00 D peq Gn g = 1.

A-density of the set K C N is defined by

da(K) := lim Zan,k

n—00
keK

if the limit exists.

The sequence x = (z,,) is A-statistical convergent to L € R, if for every ¢ > 0 the set
K(n,e) :={k : k<mn, |zx—L| > e} has A-density zero. It is denoted by z,, — L(A— st).

By using A-density, matrix characterization of statistical convergence has been given
in [8]. After this study, some concepts in classical analysis has been generalized [1, 2, 4,
5, 6, 9, 10, 12], etc.

In this study, A-statistical lower and upper bound of real valued sequences will be
defined. By using this concept, A-statistical supremum and A-statistical infimum will be
investigated and mainly their relations between A-statistical convergence will be given.

Definition 1. (A-Statistical Lower Bound) The point | € R is called A- statistical lower
bound of the sequence x = (xy,), if the following

dal{k : xp>1}) =1 (or da({k : zr <l1})=0) (1)
hold.
The set of A-statistical lower bound of the sequence = = (z,,) is denoted by L4(x):
La(x):={l€R : [ satisfies (1)}
Let us denote the set of usual lower bound of the sequence x = (x,,) by L(x):
L(z):={leR : [ <x, forall n € N}.
From the above definition we have following simple result:

Theorem 1. Ifl € R is an usual lower bound of the sequence x = (), then | € R is an
A-statistical lower bound of the sequence x = (xy,).
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Proof. Let us assume [ € R is a lower bound of the sequence z = (z,,). From the
definition of usual lower bound we have [ < x,, for all n € N. So, the set

{k : x>0} =N,

Therefore,
5A({k‘ DX > l}) =1

holds. This shows that every usual lower bound is an A-statistical lower bound,

Remark 1. The inverse of Theorem 1 is not true in general.

Let us consider the sequence = = (z,,) = (—1) and | = —% € R. If we choose a regular
matrix as
z, 1<k<n,
Qnk = n
0, k> n.
It is clear that [ = —1 is an A-statistical lower bound but it is not usual lower bound for

2
the sequence z = (z,,) = (—1).

Definition 2. (A-statistical Upper Bound) The point m € R is called A-statistical upper
bound of the sequence x = (xy,), if the following

0a({k : zp<m}) =1 (or 6a({k : xx >m})=0) (2)
hold.
The set of A-statistical upper bound of the sequence = = (x,) is denoted by Ua(z):
Ua(z) :={m e R : m satisfies (2)}.
Let us denote the set of usual upper bound of the sequence = = (x,) by U(z):
Ux):={meR : x, <m foralln € N}.
From the above definition we have following simple result:

Theorem 2. If m € R is an usual upper bound of the sequence © = (), then it is an
A-statistical upper bound of the sequence x = (zy,).

Proof. Let us assume m € R is an usual upper bound of the sequence x = (z,,). From
the definition of usual upper bound we have z,, < m for all n € N. So, the set

{k : zx <m}=N.

Therefore,
6a({k : zp <m}) =1

holds. This shows that every usual upper bound is an A-statistical upper bound, i. e,
U(z) CUy(x).<
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Remark 2. The inverse of Theorem 2 is not true in general.

Let us consider the sequence = = (z,,) = (%) and [ = % € R. If we choose
s 1<k<n,
Ank = "
0, k> n.

regular matrix. It is clear that [ = % is an A-statistical upper bound but it is not usual

upper bound for the sequence z = (z,,) = (1).

Corollary 1. Ifl € R is an A-statistical lower bound of the sequence x = (xy,) and ' <,
then I' € R is also A-statistical lower bound of the sequence x = (2y,).

Proof. Assume that [ € R is an A-statistical lower bound of the sequence x = (z,).
Then,
6a({k + zp 21} =1).

Since I’ < 1, then the inclusion
{k : xkzl}C{k : kal,}

holds. So, we have

Therefore,
Sal{k x>0} = 1.

So, I’ € R is an A-statistical lower bound of the sequence = = (z,,).«
Corollary 2. If m € R is an A-statistical upper bound of the sequence x = () and

m < m/, then m’ € R is also A-statistical upper bound of the sequence x = (xy,).

Proof. Assume that m € R is an A-statistical upper bound of the sequence z = ().
Then,
da{k + zp <m}p=1).

Since m < m/, then the inclusion
{k : zp<m}c{k : z, <m'}

holds. So, we have
1<8a({k : a2 <m'}).

Therefore,
Sal{k + zp <m'}) =1

So, m’ € R is an A-statistical upper bound of the sequence z = (z,,).4

Remark 3. If the sequence x = (x,,) has an A-statistical lower (upper) bound, then it has
infinitely many A-statistical lower (upper) bounds.
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Definition 3. (A-Statistical Infimum (inf4)) A number s € R is called A-statistical infi-
mum of the sequence x = (z,) if s € R is supremum of La(x). That is

in}xfaz :=sup L4(x).

Definition 4. (A-Statistical Supremum (supy)) A number s’ € R is called A-statistical
supremum. of the sequence x = (x,,) if 8 € R is infimum of Ua(x). That is

sup x := inf Uy(x).
A

Theorem 3. Let x = (z,,) be a sequence of real numbers. Then,

inf z, < i%f Ty < supx, < sup T,
A

hold.

Proof. From the definition of usual infimum we have
da({k : infzx, <zi}) =0a(N) = 1.

This gives inf x,, € L4(x). Since infg x = sup La(x), then inf 4 = > inf z,, hold.
From the definition of usual supremum we have

oa({k : supx, > xr}) =d4(N) = 1.

This gives sup x,, € Ug(x). Since sup 4 2, = inf U4 (x), then sup 4 < sup z,, hold. For
to completion of the proof it is enough to show that the inequality

[<m (3)

holds for any [ € La(z) and m € Ug(x).

Let us assume (3) is not true. That is there exist a I’ € La(x) and m’ € Ua(z) such
that m’ < I’ is satisfied. Since m’ is an A-statistical upper bound, then from Corollary 1
(IT) 1" is also A-statistical upper bound of the sequence. This is the contradiction to the
assumption of I’. Therefore, I < m hold.«

Remark 4. Let A = (ank) be a non-negative reqular matriz.
a) If x = (xy,) is a constant sequence then,

inf z,, = ir}lf Ty = SUP Xy = SUP Ty
A

b) If we consider the sequence x = (x,,) as

{ Ty, n <ng,ng € N fized
Ty =
a, mn>ng
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such that x, < a for alln € {1,2,3,...,n9}, then

infz, < ir}lf T, < SUp Xy, = SUP Tpy-
A

¢) If we consider the sequence x = (x,,) as

Y % n <ng,ng € N fized
"l a, m>mng

such that x,, > a for alln € {1,2,3,...,n0}, then

infz, = iﬁf Ty < SUpx, < Sup .
A

Theorem 4. Let x = (x,) be a real valued sequence and A = (ank) be a regular matriz.
Then,

0A({k @ =z ¢ [igfxn,supxn]}) =0
A

and
0a({k : xp € [infa,,supz,]}) =1
A A
hold.
Proof. Let us assume for simplicity infsx, = | and supyx, = m. That is [ =

sup L4(z) and m = inf Ug(x). From the definition of infimum and supremum we have
l—e€La(z), m+e e Us(x) and

[[,m] C [l —&,m +¢] (4)
It is clear from (4) that we have

oal{k : zx ¢ [l,m]}) < 0a{k : zx ¢[l—e,m+el}) =
= 0a({k : zr<l—e})+0al{k : zp>m+e}) (5)

Since d4({k : xx <l—¢€})=0and d4({k : xx >m+e}) =0, then from (5) we have
5A({k Tk §é [inffnmsup$n]}) =0.
A A
It is clear that the following equality
{k : xp € [infxy,supxy,|} =N—{k : zx ¢ [inf z,,supz,]}
A A A A
hold and we have
oa({k : xg € [infzy,,supz,]}) = 04(N) — d4({k : =z ¢ [inf x,, sup x,]}).
A A A A

This gives the desired result.«
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Theorem 5. If lim, o x, =1, then supy z, = inf4 x, = [.

Proof. Assume lim,, o z, =1, i.e,
For every € > 0, there exist ng = ng(¢) € N such that

lzy, — 1| <e, (6)
hold for all n > ng. Therefore, the following inclusion deduced from (6)
N—{1,2,3,...,n0} C{k : ap >1—¢}, (7)
N—{1,2,3,...,n0} C{k : ap <l+¢}. (8)
By using (7) and (8) we obtain
da{k @z >1—¢}) =1,
and
da{k @ oz <l+e}) =1

This discussion gives
l—e€La(z), l+e€Uyx)

for all € > 0 such that
L(z) = (—o00,1) and Ua(z) = (I, 00).

Therefore,

inf x,, = sup(—o0,l) = = inf(l,00) = supz,
A A

is obtained. <«

Remark 5. Theorem 5 stays true when | = Foo.

Proof. We shall give the proof only for [ = +00. Lets take arbitrary M € R. From the
assumption, Ing = ng(M) € N such that x,, > M for all n > ngy. So,

5A({k‘ : aijM}) 25A(N—{1,2,...,n0}):1
and
da({k + xp < M}) <6a({1,2,...,n0}) = 0.

Therefore, M € La(z), M ¢ Us(x), i.e. La(x) = (—o00,+00) and Uyg(x) = 2.

Hence, inf4 x = sup La(x) = oo, supy « = inf Ug(z) = inf4 @ = 00.«

The following Corollary is a simple consequence of Theorem 5. So, the proof is omitted
here.

Corollary 3. Let x = (zy,) be a real valued sequence. The following statements are true.
I) If the sequence x = (x,) is monotone increasing, then inf 4 x,, = sup x,,.
II) If the sequence x = (xy,) is monotone decreasing, then sup 4 x, = inf x,,.
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Remark 6. Let A = (ank) be a non-negative reqular matriz.
a) If x = (xy,) is monotone increasing, then

infx, < iﬁf Ty, = SUP Xy, = SUP Ty,
A

b) If © = (x,,) is monotone decreasing, then

inf z,, = ir}lf Ty = SUp x, < SUp Tp.
A

Remark 7. The inverse of Theorem & is not true.

For to see this let us consider the sequence x = () as

Y n=kk=1,2,..,
"1 0, otherwise

and the matrix a = (ay)) as

w5 1<k<n,
nk = 0, k> n.

It is clear that sup4 x,, = inf4 ,, = 0 but the sequence is not convergent to 0.
Theorem 6. lim,, o, x, = [(A — st) if and only if supy x,, = inf 4z, = .
Proof. 7 =7 Assume that lim,,_,o x,, = (A — st). We have for every £ > 0,
oAl{k : k<n, |zpy =1 >e})=0

hold. Since,

{k : kE<n,|ap—1l|>c}={k : k<n,xx >14+ec}U{k : k<n,z <l—¢}

and from (9) we have
dal{k @z >1+¢€})=0

and
da{k @ oz <l—e})=0.

Also, from (9) we have
0A({k : k<n, |z -1l <e}) =1

and (12) gives
dal{k : o <i+e})=1

and
dal{k @ zp>1l—¢}) =1

(10)

(11)

(12)

(13)

(14)
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The equation (10) and (13) gives [ + ¢ is an A-statistical upper bound and (11) and (14)
gives | — ¢ is an A-statistical lower bound for the sequence.
So,
La(z) = (—o0,l) and Ua(z) = (I, 00).

Therefore, we have
supLa(x) =1, infUy(x) =1.

7 &7 Assume that
supx, = inf x,, = [.
A A

That is
l=supLa(z) =inf Uy(x).

From the definition of supremum and infimum, there exists at least one element I’ € L 4(x)
and " € Uy(x) for all e > 0 such that the inequality

l—e<l'and " <l+¢
hold. Since I’ is an A-statistical lower bound then we have following inclusion
{k :ap>l+eyc{k @ x>0}

So,
da({k @ zx>1+e})=0 (15)

Since [” is an A-statistical upper bound then we have following inclusion
{k o <l—e}yC{k : o <"}

So,
dal{k @z <l—¢})=0. (16)

From the equations (15), (16) and
{k t|zg =1l >e={k : xp>1+e}U{k : x <l—¢},

we have

Sa{k : |zx —1 > €}) =0.

Therefore, the sequence = = (x,,) is A-statistical convergent to | € R.«

Definition 5. The real valued sequences x = (x,) and y = (yn) are called A-statistical
equivalent if the A-density of the set H = {k : x # yx} is zero. It is denoted by x < y.

Theorem 7. If the sequence x = (z,) and y = (y,) are equivalent, then

inf x, = inf y,, and sup x, = sup yYn.
A A A A
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Proof. Since the sequence x = (x,) and y = (y,) are equivalent, then the set H =
{k : x1 # yr} has zero A-density. Let us consider an arbitrary element [ € L4(z). The
element | € R is an A-statistical lower bound of the sequence x = (z,,), then we have

0a{k iz <1})=0and do({k:xx > 1}) = 1.
From the following inclusion
{k:yk<l}:{k:xk7éyk<l}U{/<;:a:k:yk<l}CHU{k:xk:yk<l}
we have
0<da({k:yr<l}) = dal{k:ar £y <1})+0a({k:2p =yr <I})

< SAaH)+0a{k iz =yr <1})=0+0=0. (17)

Since the inclusion
{krye =1t = {krap#ye 2B ULk iz =y, > 1}

D) {k:xk:yk<l}

then we have
L=0a({k:yp 21}) 2 0a({k:ap =y > 1}) = 1. (18)

From (17) and (18), the element [ € R is an A-statistical lower bound of the sequence
Y = (yn). That is, La(z) C La(y).

If we consider an arbitrary element [ € L4(y), it can be easily obtained that [ € L z(z).
Then La(y) C La(z). Therefore,

La(y) = La(z)
hold. Since sup La(y) = sup La(z), then inf4 z = inf4 y is obtained.

By using the same argument as above it can be obtained sup4 x = sup4 y. <

Definition 6. (Upper or Lower Peak Point) [11] The point xy, is called upper( or lower)
peak point of the sequence x = (x,) if the inequality x, > x; (or xp < x;) holds for all
1> k.

Theorem 8. Let x = (x,) be a real valued sequence. If the element xy, is an upper(or
lower) peak point of (xy,), then the element x,, is an A-statistical upper (or A-statistical
lower) bound.

Proof. Assume the point x,, is an upper peak point of the sequence x = (x,) that
xk < xp, holds for all &k > ng. So, the following inclusion

{k:zp <wp,} DN—-{1,2,...,n0}
holds. From this inclusion and the properties of asymptotic density we have
1 <6a({k:ar <ap,}) =1.

This give us the point z,, is an A-statistical upper bound of the sequence = = (z,,). 4
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Theorem 9. Let x = (z,,) be a real valued sequence and A = (ank), B = (buk) be regular
matriz. If the condition
o
lim su Gnk — bpk| =0
n—)oop];‘ nk nk’

hold. Then

inf z,, = inf z,, and sup z,, = sup x,,.
A B A B

Proof. Let K1 ={k : zr <m}, Ko ={k : xx > m} be subsets of natural numbers
N for all m € R. For K = K;(or K>)

04(K) = 0p(K)| = | lim Y ank — Y buil
keK keK
keK

o
< ) lank — bukl
k=1

hold. Namely d4(K) = dp(K). So inf4 x, = infp x,,.
Remark 8. The inverse of Theorem 9 is not true.
For to see this let us consider the sequence z = (z,,) where

D I n==kk=1,2,..,
"1 0, otherwise,

and the matrices A = (ay ) and B = (b, 1) as

%, k= n?,
Ank = 1—%, k=n?+1,
0, otherwise,
and
ﬁ, k =n?,
bk =4 1= s5hgy, k=n’+1,
0, otherwise.

The matrices A, B are non-negative and regular. This sequence and matrices A and B has
been considered in [4]. It is clear that La(z) = (—00,0], Lg(x) = (—00,0], Ua(z) = (0, 00)
and Up(x) = (0,00). Therefore,

sup La(z) =supLp(z) =0

and
inf Uy(x) = inf Ug(x) = 0.

That is, supy * = supg @, inf4 x = infp « hold. Unfortunately, the condition given theo-
rem doesn’t hold for the matrices A and B. The other case is obtained by similar way.«
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