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Abstract. In this review article we give an overview on some known results recently obtained
within the study of the Dirichlet problem for a class of second-order linear elliptic equations in
weighted Sobolev spaces on unbounded domains.
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1. Introduction

In this review article we are interested in the study, in an unbounded open subset Ω
of Rn, n ≥ 2, of the Dirichlet problem











u ∈W 2,p
s (Ω)∩

◦
W1,p

s (Ω) ,

Lu = f , f ∈ Lp
s(Ω) ,

(1.1)

where L is the uniformly elliptic second order linear differential operator with discontinuous
coefficients

L = −

n
∑

i,j=1

aij
∂2

∂xi ∂xj
+

n
∑

i=1

ai
∂

∂xi
+ a,

p > 1, s ∈ R, and W 2,p
s (Ω),

◦
W 1,p

s (Ω) and Lp
s(Ω) are certain classes of weighted Sobolev

and Lebesgue spaces, recently introduced in [5].
In particular, we consider a weight ρs that is a power of a function ρ of class C2(Ω̄)

such that ρ : Ω̄ → R+ and

sup
x∈Ω

|∂αρ(x)|

ρ(x)
< +∞, ∀ |α| ≤ 2,
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lim
|x|→+∞

(

ρ(x) +
1

ρ(x)

)

= +∞ and lim
|x|→+∞

ρx(x) + ρxx(x)

ρ(x)
= 0.

To fix the ideas one can think of the function

ρ(x) = (1 + |x|2)t, t ∈ R\{0}.

We assume that the leading coefficients satisfy hypotheses of Miranda’s type, having in
mind the classical paper [4] where the aij have derivatives in L

n(Ω). To be more precise, we
suppose that the (aij)xh

belong to suitable Morrey type spaces that are a generalization to
unbounded domains of the classical Morrey spaces. This hypothesis is of crucial relevance
in our analysis since it allows to rewrite the operator in variational form in order to exploit
some non-weighted a priori estimates, proved for divergence form problems in [6, 7, 8].
The main result of this work, proved in [10], is the following weighted W 2,p-bound, p > 1,

‖u‖
W 2,p

s (Ω)
≤ c‖Lu‖Lp

s (Ω), ∀u ∈W 2,p
s (Ω)∩

◦
W1,p

s (Ω), (1.2)

that allows to deduce, via the method of continuity along a parameter, the solvability
of the Dirichlet problem (1.1). We refer the reader also to [5] where, for p = 2, the
corresponding non-weighted and weighted cases have been studied.

2. A Class of Weighted Sobolev Spaces

Let us introduce the class of weighted spaces we are interested in. They have been
recently defined in [5], where detailed descriptions of all the properties below are provided.

To this aim, given an open subset Ω of Rn, not necessarily bounded, n ≥ 2, and k ∈ N0,
we consider a weight function ρ : Ω̄ → R+ such that ρ ∈ Ck(Ω̄) and

sup
x∈Ω

|∂αρ(x)|

ρ(x)
< +∞, ∀ |α| ≤ k. (2.1)

An example is given by

ρ(x) = (1 + |x|2)t, t ∈ R.

For k ∈ N0, p ∈ [1,+∞[ and s ∈ R, and given ρ satisfying (2.1), we define the weighted

Sobolev space W k,p
s (Ω) as the space of distributions u on Ω such that

‖u‖
W k,p

s (Ω)
=

∑

|α|≤k

‖ρs∂αu‖Lp(Ω) < +∞. (2.2)

Furthermore,
◦
Wk,p

s (Ω) denotes the closure of C∞
◦ (Ω) in W k,p

s (Ω) and Lp
s(Ω) =W 0,p

s (Ω).

Let us state now a useful lemma obtained from the more general result of [5]. We refer
the reader to [1] for the definition of sets having the segment property.
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Lemma 2.1. Let k ∈ N0, p ∈ [1,+∞[ and s ∈ R. If Ω has the segment property and
assumption (2.1) is satisfied, then

Ck
o (Ω) ⊂

◦
W

k,p
s (Ω).

We now prove the following fundamental result (see also Lemmas 2.1, 2.2 and 2.5 of
[5]):

Lemma 2.2. Let k ∈ N0, p ∈ [1,+∞[ and s ∈ R. If Ω has the segment property and
assumption (2.1) is satisfied, then the map

u −→ ρsu

defines a topological isomorphism from W k,p
s (Ω) toW k,p(Ω) and from

◦
Wk,p

s (Ω) to
◦
Wk,p(Ω).

Proof. Let us start by observing that, due to assumption (2.1), one has

sup
x∈Ω

|∂αρs(x)|

ρs(x)
< +∞ ∀s ∈ R, ∀ |α| ≤ k. (2.3)

This can be proved by induction. Indeed, (2.1) implies

|(ρs)xi
| = |sρs−1ρxi

| ≤ c1ρρ
s−1 = c1ρ

s, i = 1, . . . , n,

with c1 = c1(s) positive constant. Therefore (2.3) is true for |α| = 1.J
Assume now that (2.3) holds for any β such that |β| < |α| and any s ∈ R, and fix a

β such that |β| = |α| − 1. Then, using (2.1) and by the induction hypothesis written for
s− 1, we have

|∂αρs| = |∂β(ρs)xi
| = |∂β(sρs−1ρxi

)| ≤

c2
∑

γ≤β

|∂β−γρxi
∂γρs−1| ≤ c3ρρ

s−1 = c3ρ
s, for i = 1, . . . , n,

with c2 = c2(s) and c3 = c3(s) positive constants. That is, (2.3) is true also for α.
In view of (2.3) we have that

|∂α(ρsu)| ≤ c4
∑

γ≤α

|∂α−γρs ∂γu| ≤ c5
∑

γ≤α

|ρs∂γu|, ∀ |α| ≤ k,

with c4 = c4(s) and c5 = c5(s) positive constants. Therefore, there exists a positive
constant c6 = c6(s) such that

||ρsu||W k,p(Ω) ≤ c6||u||W k,p
s (Ω)

. (2.4)

Moreover, there exists also a positive constant c7 = c7(s) such that

||u||
W k,p

s (Ω)
≤ c7||ρ

su||W k,p(Ω). (2.5)
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In order to prove (2.5), let us show that

|ρs∂αu| ≤ c8
∑

δ≤α

|∂δ(ρsu)|, ∀ |α| ≤ k, (2.6)

with c8 = c8(s) positive constant. Again, this will be done by induction. From (2.3) one
has

|ρsuxi
| = |(ρsu)xi

− (ρs)xi
u| ≤ c9

(

(ρsu)x + ρs|u|
)

,

for i = 1, . . . , n, with c9 = c9(s). Hence, (2.6) holds for |α| = 1.
If (2.6) holds for any δ such that |δ| < |α|, then, using again (2.3) and by the induction

hypothesis, we have

|ρs∂αu| ≤ |∂α(ρsu)|+ c10
∑

δ<α

|∂α−δρs||∂δu| ≤

|∂α(ρsu)|+ c11
∑

δ<α

|ρs∂δu| ≤ c12
∑

δ≤α

|∂δ(ρsu)|,

with c10 = c10(s), c11 = c11(s) and c12 = c12(s) positive constants. Combining (2.4) and
(2.5) we obtain the first part of the claim.

To finish our proof we have to show that u ∈
◦
Wk,p

s (Ω) if and only if ρsu ∈
◦
Wk,p(Ω).

If u ∈
◦
Wk,p

s (Ω), there exists a sequence (φh)h∈N ⊂ C∞
o (Ω) converging to u in W k,p

s (Ω).
Therefore, fixed ε ∈ R+, by (2.4) there exists h0 ∈ N such that

‖ρs(φh − u)‖W k,p(Ω) <
ε

2
, ∀h > h0. (2.7)

Fix h1 > h0. Clearly ρsφh1 ∈
◦
W k,p(Ω), because of its compact support. Therefore, there

exists a sequence (ψn)n∈N ⊂ C∞
o (Ω) converging to ρsφh1 in W k,p(Ω). Hence, there exists

n0 ∈ N such that

‖ψn − ρsφh1‖W k,p(Ω) <
ε

2
, ∀n > n0. (2.8)

Putting together (2.7) and (2.8) we get

‖ψn − ρsu‖W k,p(Ω) ≤ ‖ψn − ρsφh1‖W k,p(Ω) + ‖ρsφh1 − ρsu‖W k,p(Ω) < ε,

∀n > n0. Thus ρ
su ∈

◦
Wk,p(Ω).

Vice-versa, if we assume that ρsu ∈
◦
W k,p(Ω), we find a sequence (φh)h∈N ⊂ C∞

o (Ω)
converging to ρsu in W k,p(Ω). Hence, by (2.5) there exists h0 ∈ N such that

‖ρ−sφh − u‖
W k,p

s (Ω)
<
ε

2
, ∀h > h0. (2.9)

Fix h1 > h0. Since ρ−sφh1 ∈ Ck
o (Ω), which is contained in

◦
Wk,p

s (Ω) by Lemma 2.1, there

exists a sequence (ψn)n∈N ⊂ C∞
o (Ω) converging to ρ−sφh1 in W k,p

s (Ω). Therefore, there
exists n0 ∈ N such that

‖ψn − ρ−sφh1‖W k,p
s (Ω)

<
ε

2
, ∀n > n0. (2.10)



Dirichlet Problem for Elliptic Equations in Weighted Sobolev Spaces 83

From (2.9) and (2.10) we get

‖ψn − u‖
W k,p

s (Ω)
≤ ‖ψn − ρ−sφh1‖W k,p

s (Ω)
+ ‖ρ−sφh1 − u‖

W k,p
s (Ω)

< ε,

∀n > n0. So that u ∈
◦
Wk,p

s (Ω).

From now on, let us suppose that the weight ρ satisfies (2.1) with k = 2 and the
additional assumptions holds:

lim
|x|→+∞

(

ρ(x) +
1

ρ(x)

)

= +∞ and lim
|x|→+∞

ρx(x) + ρxx(x)

ρ(x)
= 0. (2.11)

As an example, we can then consider

ρ(x) = (1 + |x|2)t, t ∈ R\{0}.

We associate to ρ the function σ defined by














σ = ρ if ρ→ +∞ for |x| → +∞,

σ =
1

ρ
if ρ→ 0 for |x| → +∞.

(2.12)

It is easily seen that σ verifies (2.1) too, and moreover

lim
|x|→+∞

σ(x) = +∞, lim
|x|→+∞

σx(x) + σxx(x)

σ(x)
= 0. (2.13)

Now, fix a cutoff function f ∈ C∞
◦ (R̄+) such that

0 ≤ f ≤ 1, f(t) = 1 if t ∈ [0, 1], f(t) = 0 if t ∈ [2,+∞[

and set

ζk : x ∈ Ω̄ −→ f

(

σ(x)

k

)

, k ∈ N

and
Ωk = {x ∈ Ω : σ(x) < k }, k ∈ N. (2.14)

If we define the sequence

ηk : x ∈ Ω̄ −→ 2k ζk(x) + (1− ζk(x))σ(x), k ∈ N,

one has that, for any k ∈ N,
σ ∼ ηk. (2.15)

Furthermore, concerning the derivatives, one can show that, for any k ∈ N,

(ηk)x
ηk

≤ c′1 sup
Ω\Ωk

σx
σ

in Ω, (2.16)
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(ηk)xx
ηk

≤ c′2 sup
Ω\Ωk

σ2x + σσxx
σ2

in Ω. (2.17)

Moreover,

lim
k→+∞

sup
Ω\Ωk

σx(x) + σxx(x)

σ(x)
= 0. (2.18)

3. The Spaces of the Coefficients

Here we recall the definitions and the main properties of Morrey type spaces. These
spaces were first introduced in [11] (see also [2] for further investigations) to extend the
classical notion of Morrey spaces to the case of unbounded domains. Let us consider,
then, an unbounded open subset Ω of Rn, n ≥ 2. By Σ(Ω) we denote the σ-algebra of
all Lebesgue measurable subsets of Ω. For E ∈ Σ(Ω), χE is its characteristic function,
|E| its Lebesgue measure and E(x, r) = E ∩ B(x, r) (x ∈ R

n, r ∈ R+), where B(x, r)
is the open ball centered at x with radius r. The class of restrictions to Ω̄ of functions
ζ ∈ C∞

◦ (Rn) is D(Ω̄). For q ∈ [1,+∞[, Lq

loc(Ω̄) is the class of all functions g : Ω → R

such that ζ g ∈ Lq(Ω) for any ζ ∈ D(Ω̄).
For q ∈ [1,+∞[ and λ ∈ [0, n[, the Morrey type space M q,λ(Ω) is made up of all the

functions g in Lq
loc(Ω̄) such that

||g||Mq,λ(Ω) = sup
τ∈]0,1]
x∈Ω

τ−λ/q||g||Lq(Ω(x,τ)) < +∞. (3.1)

The closures of C∞
◦ (Ω) and L∞(Ω) in M q,λ(Ω) are denoted by M q,λ

◦ (Ω) and M̃ q,λ(Ω),
respectively.

One has the inclusion
M q,λ

◦ (Ω) ⊂ M̃ q,λ(Ω).

Moreover,

M q,λ(Ω) ⊆M q0,λ0(Ω) if q0 ≤ q and
λ0 − n

q0
≤
λ− n

q
.

We put M q(Ω) =M q,0(Ω), M̃ q(Ω) = M̃ q,0(Ω) and M q
◦ (Ω) =M q,0

◦ (Ω).
Now, let us define the moduli of continuity of functions belonging to M̃ q,λ(Ω) or

M q,λ
◦ (Ω). For h ∈ R+ and g ∈M q,λ(Ω), we set

F [g](h) = sup
E∈Σ(Ω)

sup
x∈Ω

|E(x,1)|≤ 1
h

‖g χ
E
‖Mq,λ(Ω).

Given a function g ∈M q,λ(Ω), the following characterizations hold:

g ∈ M̃ q,λ(Ω) ⇐⇒ lim
h→+∞

F [g](h) = 0,
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and
g ∈M q,λ

◦ (Ω) ⇐⇒ lim
h→+∞

(

F [g](h) + ||(1− ζh)g||Mq,λ(Ω)

)

= 0,

where ζh denotes a function of class C∞
o (Rn) such that

0 ≤ ζh ≤ 1 , ζh|
B(0,h)

= 1 , supp ζh ⊂ B(0, 2h).

Thus, if g is a function in M̃ q,λ(Ω), a modulus of continuity of g in M̃ q,λ(Ω) is a map
∼
σq,λ[g] : R+ → R+ such that

F [g](h) ≤
∼
σq,λ[g](h), lim

h→+∞

∼
σq,λ[g](h) = 0.

While, if g belongs to M q,λ
o (Ω), a modulus of continuity of g in M q,λ

o (Ω) is an application
σo

q,λ[g] : R+ → R+ such that

F [g](h) + ‖(1 − ζh) g‖Mq,λ(Ω) ≤ σo
q,λ[g](h),

lim
h→+∞

σo
q,λ[g](h) = 0.

We end this section with some boundedness results for the multiplication operator

u −→ g u, (3.2)

where the function g belongs to suitable Morrey type spaces (see also [3] for more details).

Theorem 3.1. If g ∈ M q,λ(Ω), with q > 2 and λ = 0 for n = 2, and q ∈]2, n] and

λ = n − q for n > 2, then the operator in (3.2) is bounded from
◦
W 1,p(Ω) to L2(Ω).

Moreover, there exists a constant C ∈ R+ such that

‖g u‖L2(Ω) ≤ C ‖g‖Mq,λ(Ω) ‖u‖W 1,2(Ω) ∀u ∈
◦
W

1,p(Ω),

with C = C (n, q).

Let p > 1 and r, t ∈ [p,+∞[. If Ω is an open subset of Rn having the cone property
and g ∈M r(Ω), with r > p for p = n, then the operator in (3.2) is bounded from W 1,p(Ω)
to Lp(Ω). Moreover, there exists a constant c ∈ R+ such that

‖g u‖Lp(Ω) ≤ c ‖g‖Mr(Ω) ‖u‖W 1,p(Ω) ∀u ∈W 1,p(Ω),

with c = c (Ω, n, p, r).

If g ∈ M t(Ω), with t > p for p = n/2, then the operator in (3.2) is bounded from
W 2,p(Ω) to Lp(Ω). Moreover, there exists a constant c′ ∈ R+ such that

‖g u‖Lp(Ω) ≤ c′ ‖g‖M t(Ω) ‖u‖W 2,p(Ω) ∀u ∈W 2,p(Ω)

with c′ = c′(Ω, n, p, t).
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4. Preliminary Results

From now on Ω will be an unbounded open subset of Rn, n ≥ 2, satisfying the uniform
C1,1-regularity property (see [1] for details).

Let us start by recalling some known results, recently proved in the works [6, 7, 8, 9],
that play an essential role in the study of our weighted problem.

The first one is an Lp-bound, p > 1, obtained within the study of the Dirichlet problem

{

u ∈
◦
W1,p(Ω) ,

L̄u = f, f ∈W−1,2(Ω) ,
(4.1)

where L̄ is a second order linear differential operator in divergence form

L̄ = −

n
∑

i,j=1

∂

∂xj

(

āij
∂

∂xi
+ dj

)

+

n
∑

i=1

bi
∂

∂xi
+ c (4.2)

whose coefficients are such that










































āij ∈ L∞(Ω), i, j = 1, . . . , n ,

āij = āji, i, j = 1, . . . , n,

∃ ν > 0 :
n
∑

i,j=1

āij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ R
n ,

(h1)























bi, di ∈ M2t,λ
o (Ω) , i = 1, . . . , n ,

c ∈M t,λ(Ω) ,

with t > 1 and λ = 0 if n = 2 ,

with t ∈]1, n/2] and λ = n− 2t if n > 2 ,

(h2)

c−

n
∑

i=1

(di)xi
≥ µ, (h3)

in the distributional sense on Ω, with µ positive constant.

Let us associate to L̄ the bilinear form

a(u, v) =

∫

Ω

(

n
∑

i,j=1

(āijuxi
+ dj u) vxj

+ (

n
∑

i=1

biuxi
+ cu)v

)

dx, (4.3)

u, v ∈
◦
W1,p(Ω), and note that, as a consequence of Theorem 3.1, the form a is continuous

on
◦
W 1,p(Ω)×

◦
W 1,p(Ω) and then the operator L̄ :

◦
W 1,p(Ω) → W−1,2(Ω) is continuous as

well. The above mentioned bound is the assertion of the following theorem:
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Theorem 4.1. Assume that hypotheses (h1) − (h3) are satisfied. If f ∈ L2(Ω) ∩ Lp(Ω),
for some p ∈]1,+∞[, then the solution u of problem (4.1) is in Lp(Ω) and

‖u‖Lp(Ω) ≤ C‖f‖Lp(Ω), (4.4)

where C is a constant depending on n, t, p, ν, µ, ||bi − di||M2t,λ(Ω), i = 1, . . . , n.

This last bound plays a crucial role in the proof of a non-weighted estimate for the
non variational problem below.

Let

L = −
n
∑

i,j=1

aij
∂2

∂xi ∂xj
+

n
∑

i=1

ai
∂

∂xi
+ a , (4.5)

with the following conditions on the coefficients:






























































aij = aji ∈ L
∞(Ω), i, j = 1, . . . , n ,

∃ ν > 0 :
n
∑

i,j=1

aij ξi ξj ≥ ν|ξ|2 a.e. in Ω , ∀ ξ ∈ R
n,

(aij)xh
∈ M q,λ

o (Ω) , i, j, h = 1, . . . , n, with

q > 2 and λ = 0 for n = 2 ,

q ∈]2, n] and λ = n− q for n > 2 .

(h′1)











ai ∈ M r
o (Ω) , i = 1, . . . , n , with

r > 2 if p ≤ 2 and r = p if p > 2 for n = 2,

r ≥ p and r ≥ n, with r > p if p = n for n > 2,

(h′2)



























a ∈ M̃ t(Ω) , with

t = p for n = 2 ,

t ≥ p and t ≥
n

2
, with t > p if p =

n

2
for n > 2,

ess inf
Ω

a = a0 > 0.

(h′3)

In view of Theorem 3.1, under the assumptions (h′1) - (h
′
3), the operator L : W 2,p(Ω) →

Lp(Ω) is also bounded.
The existence of the derivatives of the aij is a crucial hypothesis that allows to rewrite

the operator L in divergence form and exploit (4.4) to obtain the following theorem, whose
proof can be found in Theorem 3.2 of [9].

Theorem 4.2. Let L be defined in (4.5). If hypotheses (h′1)-(h
′
3) are satisfied, then there

exists a constant c ∈ R+ such that

‖u‖W 2,p(Ω) ≤ c‖Lu‖Lp(Ω) ∀u ∈W 2,p(Ω)∩
◦
W

1,p(Ω) , (4.6)

with c = c(Ω, n, ν, p, r, t, ||aij ||L∞(Ω), σo
q,λ[(aij)xh

], σo
r[ai],

∼
σ t[a], a0).
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As we will see in the last section, this last preliminary estimate together with the topo-
logical isomorphism in Lemma 2.2 will allow us to show the analogous weighted estimate.

5. Main Theorem

Here we present the main result of this work, proved in Theorems 4.2 and 5.2 of [10].
The proof of this theorem will be performed in two steps: in the first one we show a
weighted a priori bound and in the second we derive the solvability of a weighted Dirichlet
problem associated to the operator L.

Theorem 5.1. Let L be defined in (4.5). If hypotheses (h′1)-(h
′
3) are satisfied, then there

exists a constant c ∈ R+ such that

‖u‖W 2,p
s (Ω) ≤ c‖Lu‖Lp

s(Ω) ∀u ∈W 2,p
s (Ω)∩

◦
W1,p

s (Ω) , (5.1)

with c = c(Ω, n, s, ν, p, r, t, ||aij ||L∞(Ω), ||ai||Mr(Ω), σo
q,λ[(aij)xh

], σo
r[ai],

∼
σ t[a], a0).

Moreover, the problem










u ∈W 2,p
s (Ω)∩

◦
W1,p

s (Ω) ,

Lu = f , f ∈ Lp
s(Ω) ,

(5.2)

is uniquely solvable.

Proof. Step 1. Fix u ∈ W 2,p
s (Ω)∩

◦
W 1,p

s (Ω). If ρ → +∞ for |x| → +∞, then σ = ρ.

Thus, in view of the isomorphism of Lemma 2.2, one has that σsu ∈W 2,p(Ω)∩
◦
W1,p(Ω).

Now if we write ηk = η for a fixed k ∈ N, since η and σ are equivalent, one also has that

ηsu ∈ W 2,p(Ω)∩
◦
W 1,p(Ω). Hence, the estimate in Theorem 4.2 implies that there exists

c0 ∈ R+, such that
||ηs u||W 2,p(Ω) ≤ c0||L(η

su)||Lp(Ω), (5.3)

with c0 = c0(Ω, n, ν, p, r, t, ||aij ||L∞(Ω), σo
q,λ[(aij)xh

], σo
r[ai],

∼
σ t[a], a0).

Easy calculations provide that

L(ηsu) = ηsLu− s

n
∑

i,j=1

aij

(

(s− 1)ηs−2ηxi
ηxj

u+ ηs−1ηxixj
u+

+ 2ηs−1ηxi
uxj

)

+ s

n
∑

i=1

aiη
s−1ηxi

u. (5.4)

By (5.3) and (5.4) we get

||ηs u||W 2,p(Ω) ≤ c1

(

||ηs Lu||Lp(Ω) +
n
∑

i,j=1

(

||ηs−2ηxi
ηxj

u||Lp(Ω) +



Dirichlet Problem for Elliptic Equations in Weighted Sobolev Spaces 89

+ ||ηs−1ηxixj
u||Lp(Ω) + ||ηs−1ηxi

uxj
||Lp(Ω)

)

+

+
n
∑

i=1

||aiη
s−1ηxi

u||Lp(Ω)

)

, (5.5)

where c1 ∈ R+ depends on the same parameters as c0 and on s.
Moreover, from Lemma 3.1 and (2.16) we obtain

||aiη
s−1ηxi

u||Lp(Ω) ≤ c2 sup
Ω\Ωk

σx
σ

||ai||Mr(Ω)||η
su||W 1,p(Ω), (5.6)

with c2 = c2(Ω, n, p, r).
Combining (2.16), (2.17), (5.5) and (5.6), we have

||ηs u||W 2,p(Ω) ≤ c3

[

||ηs Lu||Lp(Ω) +

(

sup
Ω\Ωk

σ2x + σ σxx
σ2

+ (5.7)

+ sup
Ω\Ωk

σx
σ

)

||ηs u||W 2,p(Ω)

]

,

where c3 depends on the same parameters as c1 and on ‖ai‖Mr(Ω).
Furthermore, by (2.18) it follows that there exists ko ∈ N such that

(

sup
Ω\Ωko

σ2x + σ σxx
σ2

+ sup
Ω\Ωko

σx
σ

)

≤
1

2 c3
. (5.8)

Therefore, if we denote by η the function ηko, putting together (5.7) and (5.8) we
obtain

||ηs u||W 2,p(Ω) ≤ 2c3||η
s Lu||Lp(Ω). (5.9)

This last estimate, (2.15) with for k = ko and the topological isomorphism in Lemma 2.2
give

∑

|α|≤2

||σs∂αu||Lp(Ω) ≤ c4||σ
sLu||Lp(Ω), (5.10)

with c4 depending on the same parameters as c3 and on ko.

If ρ → 0 for |x| → +∞, then σ = ρ−1. Thus, again by Lemma 2.2, one has that

σ−su ∈W 2,p(Ω)∩
◦
W1,p(Ω) . Therefore, arguing as to get (5.10), one obtains

∑

|α|≤2

||σ−s∂αu||Lp(Ω) ≤ c5||σ
−sLu||Lp(Ω). (5.11)

This concludes the proof of (5.1).
Step 2. For each τ ∈ [0, 1] we put

Lτ = τ(L) + (1− τ)(−∆+ b) ,



90 S. Monsurrò, M. Transirico

with b given by

b = 1 +
∣

∣

∣
− s(s+ 1)

n
∑

i=1

σ2xi

σ2
+ s

n
∑

i=1

σxixi

σ

∣

∣

∣
(5.12)

if ρ→ +∞ for |x| → +∞, or

b = 1 +
∣

∣

∣
− s(s− 1)

n
∑

i=1

σ2xi

σ2
− s

n
∑

i=1

σxixi

σ

∣

∣

∣
(5.13)

if ρ→ 0 for |x| → +∞.

By (5.1) one gets

||u||W 2,p
s (Ω) ≤ c||Lτu||Lp

s(Ω),

∀u ∈W 2,p
s (Ω)∩

◦
W

1,p
s (Ω) , ∀τ ∈ [0, 1] .

Therefore, using the result of Lemma 5.1 of [10] and the method of continuity along a
parameter we obtain the solvability of problem (5.2). J
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