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Learning Theory and Approximation by Neural Networks

V. Maiorov

Abstract. This paper quantifies the approximation capability of Neural Networks and their ap-
plication in machine learning theory. The problem of Learning Neural Networks from samples is
considered. The sample size which is sufficient for obtaining the almost-optimal stochastic ap-
proximation of function classes is obtained. In the terms of the accuracy confidence function we
show that the least square estimator is almost-optimal for the problem. Moreover, we consider the
analogous problems related to learning by radial basis functions.
Learning theory is a growing field of research which attracts a large number of researchers from
a variety of disciplines such as computer science, economics and neural networks. Mathematics is
important for investigating learning problems since it provides the necessary level of rigorous anal-
ysis that leads to understanding the fundamental concepts and properties of learning. Specifically,
the learning problem is reduced to finding a regression function (the average function of a given
random processes) using the corresponding manifold under the condition that the function is not
known but belongs to some given class of functions. The learning network problems have a long
history (see the works of V. Vapnik, M.G.D. Powell, P.L. Bartlett, etc.)

Key Words and Phrases: Learning Theory, Neural Networks, Entropy, Stochastic approxima-
tion

2010 Mathematics Subject Classifications: 68Q32, 62L20, 68T05, 82C32

1. Introduction

Learning theory is a growing field of research which attracts a large number of re-
searchers from disciplines such as physical or biological systems, engineering applications,
financial studies. Mathematics is important for investigating learning problems since it
provides the necessary level of rigorous analysis that leads to understanding the funda-
mental concepts and properties of learning. In many systems only finite number of data
(xi, yi)

m
i=1 can be obtained. Leaning means synthesizing a function that represents the

relation between the inputs and corresponding outputs. A learning system is normally
developed for defining the function and yielding an estimator. The learning system com-
prises a hypothesis space, a family of parameterized functions that regulate the forms and
properties of the estimator to be found, and a learning strategy or an learning algorithm
that numerically yields the parameters of the estimator.
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Specifically, the learning problem is reduced to finding a regression function (the av-
erage function of a given random processes) using the corresponding manifold under the
condition that the function is not known but belongs to some given class of functions.

For results in other settings we recommend a book of V. Vapnik [34] , a survey by
T. Evgeniou, M. Pontil and T. Poggio [9], and a survey on the classification problem and
universal algorithms by G. Lugosi [16] and L. Devroy, L. Györfy, G. Lugosi [8] (see also the
papers [4, 2, 25, 26]). Important results including a construction of universal algorithms
of the learning theory are obtained in [6, 7, 14, 15, 32].

The learning neural network problem has a long history (see the works of Powell
[30] and M. Anthony & P.L. Bartlett [1], dedicated to theoretical foundations of Neural
Networks Learning. A. Pinkus [28] published the survey in the area of functional approx-
imation by Neural Networks. S. Smale [31] set up the problem of the recovery of a target
function given by a stochastic collection of samples using Neural Network manifolds. In
this work we investigate that problem. In this connection, the results of the present paper
are the continuation of [18, 19, 20, 17, 21, 22].

1.1. Learning Theory

1. One of the main problems of learning theory is to recover a function y = f(x)
having only some a priori information about it. For instance, having a finite collection of
points (x1, y1), ..., (xm, ym) as a sample of i.i.d. randomly drawn vectors (x, y) distributed
according to some probability law which in general is not known.

Consider now the problem in detail. We adopt most of the notations from [4]. Let
X and Y be some compact sets in spaces R

d and R, respectively. Assume that on the
product X × Y a Borel measure ρ is defined with ρ(X × Y ) = 1. Let f : X → Y be a
function acting from X to Y . Denote by

E(f) := Eρ(f(x)− y) :=

∫

X×Y
(f(x)− y)2dρ(x, y) (1)

the expected value (or average) of the function (f(x)− y)2 on (X × Y, ρ).
Let x be a fixed point in the set X. Denote by ρ(y|x) the regular conditional measure

on the set Y . Consider the average function on the set X

fρ(x) =

∫

Y
y dρ(y|x),

called the regression function of the measure ρ(y|x). Denote by

σ2ρ(x) =

∫

Y
(fρ(x)− y)2dρ(y|x)

the dispersion function of the measure ρ(y|x). The measure ρ induces the measure µ (or
ρX) on the set X which is defined as µ(Q) = ρ(Q × Y ) for any measurable set Q ⊂ X.
Averaging over X, we define

σ2ρ :=

∫

X
σ2ρ(x)dµ(x).
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2. Let zi = (xi, yi), i = 1, ...,m, be an arbitrary sample of m points in the set Z = X ×Y .
Construct the empirical error of f corresponding to the point z = (z1, ..., zm) of the set
Zm as

Ez(f) := Ez[(f(x)− y)2] =
1

m

m
∑

i=1

(f(xi)− yi)
2.

The quantity Ez(f) is the discrete analog of the average quantity (1).
3. Consider the Hilbert space L2(X,µ) of functions defined on X. Let W =W (X) be

some class of functions in the space L2(X,µ) with the norm

‖f‖X,µ =

(
∫

X
|f(x)|2 dµ(x)

)1/2

.

Assume that the measure ρ is such that the regression function fρ belongs to the class
W . Let H be a compact manifold of functions in L2(X,µ) which is called the hypothesis

space. For a given vector z = (z1, .., .zm) on Z
m we consider the function

fz(x) = argminf∈HEz(f) (2)

in H, that is the function fz, which achieves the minimum

Ez(fz) := min
f∈H

Ez(f).

The function fz is called the least-squares estimator. A simple calculation shows E(fρ) = σ2ρ
and

E(fz) = ‖fz − fρ‖2X,µ + σ2ρ.

We primarily measure the approximation error in the L2(X,µ) space. If we have a par-
ticular least-squares approximant fz to fρ, the quantity of the performance is measured
by

E(fz)− E(fρ) = ‖fz − fρ‖2X,µ. (3)

Define the measure ρm = ρ × ... × ρ (m times) on the set Zm to be equal to the direct
product of m copies of measure ρ. The error (3) clearly depends on z and therefore has a
stochastic nature. As a result, it is impossible to say something about (3) in general for
fixed z. Instead, we can look at its behavior in probability as measured by the expected
error

ELS
ρm(‖fz − fρ‖2X,µ) :=

∫

Zm

‖fz − fρ‖2X,µ dρm(z),

where the expectation is taken over all realizations z obtained for a fixed m.
From the law of large numbers it follows that by choosing suitable fz, Eρm(‖fz −

fρ‖2X,µ) → 0 as m→ 0.
Consider the class Em of all estimators, that is the class of all possible mappings

hz : Z
m → H. Also we consider the expected error

Eρm(‖hz − fρ‖2X,µ) :=
∫

Zm

‖hz − fρ‖2X,µ dρm(z).
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How fast Eρm(‖hz − fρ‖2X,µ) tends to zero depends at least on three things:
a) the nature of fρ,
b) the approximation properties of hypothesis space H,
c) how well we do in constructing the estimators hz.
Let M be some class of Borel measures on X. Recall that we do not know ρ, so the

best we can say about it is that fρ ∈ W . Given natural m, we define the least square

average accuracy m-deviation as

eLSm (W,H,M) := sup
ρ
Eρm(‖fz − fρ‖2X,µ),

where fz is the least-squares estimator, and ρ runs over all measures such that µ, which is
the restriction of ρ on X, belongs to M.

We enter into competition over all estimators hz and define the average accuracy m-

deviation as
em(W,H,M) := inf

hz
sup
ρ
Eρm(‖hz − fρ‖2X,µ),

where hz runs over all possible estimators from the class Em, and ρ runs over all measures
such that µ, which is the restriction of ρ on X, belongs to M.

4. Let m ∈ N and ε > 0 be any numbers. We will study the following function (see
[7],[33]) that is called the accuracy confidence function

ACm(W,H,M, ε) = inf
hz

sup
ρ
ρm(z : ‖fρ − hz‖X,µ ≥ ε),

The mapping hz which corresponds to the minimum is called universal estimator for the
quantity ACm(W,H,M, ε).

Also we consider the accuracy confidence function estimator for the least square method

ACLS
m (W,H,M, ε) = sup

ρ
ρm(z : ‖fρ − fz‖X,µ ≥ ε),

where we calculate the estimator fz by the least square formula (2). Obviously, we have

ACm(W,H,M, ε) ≤ ACLS
m (W,H,M, ε). (4)

The quantity ACm(W,W,M, ε), where the set W coincides with the hypothesis space
H, was introduced by DeVore, Kerkyacharian, Picard and Temlyakov [6],[7]. In these
works (see also [14, 15, 32]) optimal estimates for the accuracy confidence function esti-
mator ACm of a class W are obtained under condition that a behavior of the entropy (or
Kolmogorov’s) is given and has the order n−r. Temlyakov [32] constructed the universal
estimator fz using the method of least square of the form

fz = argminf∈Nε

m
∑

i=1

(f(xi)− yi)
2,

where f runs over all functions from a ε-net Nε of the set W . A series of problems closely
connected with given subjects are considered in [13, 9, 8, 16, 12]
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In the present work we estimate (see Section 3) the quantities ACLS
m and ACm for

(defined below) the Sobolev class W r
2 of functions on the unit cube and and for the neural

networks manifold H = HNN
n . We obtain almost-optimal (with additional logarithmic

factor) estimates of these quantities. Moreover we construct the universal estimator fz
using the standard method of least square, that is we construct the estimator by the
formula

fz = argminf∈HNN
n

m
∑

i=1

(f(xi)− yi)
2,

where the minimum is calculated over all (not only ε-net) functions f from the hypothesis
space HNN

n . This circumstance permits us to apply the method of least square using
parameters defining the space HNN

n . The universality of the standard method of least
squares, that is the lower bound for the quantity ACm, we obtain using the results of
works [7], [33].

1.2. The Neural Network Manifold and Affine-Invariant Dictionary

Let σ : R → R be any sigmoidal function, that is σ is non-decreasing and limt→−∞ σ(t) =
0, limt→∞ σ(t) = 1. We consider the neural network manifold of functions

HNN
n (σ) :=

{

h(•) =
n
∑

k=1

ck σ(ak · •+ bk) : ak ∈ R
d, ck, bk ∈ R for all k

}

, (5)

where a · x is the inner product of a and x. The function σ is said to be the generator

function of the neural network manifold. Consider in the manifold HNN
n (ϕ) the sub-

manifold HNN
n (ϕ,M,Ω) which consists of functions h ∈ HNN

n (ϕ) satisfying |h(x)| ≤ M
for all x ∈ Ω.

Let Ad = {(A, b)} be the set of all affine mappings in the space R
d of the form Ax+ b,

x ∈ R
d, where A and b run over the set of all real square matrices of order d and the set

of all vectors in R
d, respectively. We identify the set of the mappings Ad with the space

R
d2+d. Let ϕ(x) be any function from the space L2(R, µ). Consider the set of functions

on R
d

D(ϕ) = {ϕ(A •+b) : (A, b) ∈ Ad},
which is called affine-invariant dictionary. Let n be any natural number. Using the
dictionary, we generate the set of functions

HAI
n (ϕ) =

{

h(•) =
n
∑

k=1

ckϕ(Ak •+bk) : ck ∈ R, (Ak, bk) ∈ Ad for all k

}

, (6)

consisting of all possible linear combinations of n functions from the dictionary D(ϕ).
Note that HNN

n (σ) belongs to the affine-invariant manifold HAI
n (ϕ), where the function ϕ

is defined as ϕ(x1, ..., xd) = σ(x1).
We will consider the sub-manifoldHAI

n (ϕ,M,X) in HAI
n (ϕ) which consists of functions

h ∈ HAI
n (ϕ) satisfying |h(x)| ≤ M for all x ∈ Ω. Let K ≥ 1 be any number. Denote by
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HAI
n (ϕ,M,X,K) the subset of all functions h in HAI

n (ϕ,M) such that all elements of all
matrices Ak = {akij}di,j=1 and all vectors bk = {bki }di=1 and also all numbers ck in (10) are

bounded modulo by K, that is |akij |, |bki |, |ck| ≤ K for all i, j and k.

The manifolds HNN
n and HAI

n play an important role in neural networks and learn-
ing theory. These manifolds are utilized for approximating functions which are learnt
empirically from samples. A major problem here is the estimation of the asymptotic char-
acteristics of the error of the empirical minimizer fz. The error is often expressed in terms
of the ε-entropy, Vapnik-Chervonenkis dimension and Pseudo-dimension of the manifolds.
The concept of ε-entropy of a set is closely connected to the concepts VC-dimension (or
Pseudo-dimension) of the set. Often the upper estimates for ε-entropy are obtained us-
ing an estimate of the VC-dimension of a given set (see Vapnik and Chervonenkis [35],
Haussler [10], Mendelson and Vershinin [27]).

2. Structural and Approximation Properties of Neural Networks

Manifold

Let X = [−1, 1]d and M be a positive number. Consider the set Z = X × [−M,M ].
Let ρ be a Borel probabilistic measure on the set Z, and µ = ρ(y|x) be a corresponding
condition measure on the set X. Consider the space L2 := L2(X,µ) of all real square
integrable functions on X with respect to the measure µ.

2.1. Entropy of the NN-manifolds

In this subsection we introduce the class Φ of generator functions and present known es-
timates for the ε-entropy and pseudodimension of the classes HAI

n (ϕ,M) and HNN
n (ϕ,M)

with ϕ ∈ Φ.

Let B be a Banach space and let H be a compact set in B. The quantity

Entrε(H,B) = log2Nε(H,B),

where Nε(H,B) is the number of elements in the smallest ε-net of the set H, is called the
ε-entropy of the set H in the space B. The quantity Nε(H,B) is called the ε-covering
number of the set H.

Note that the estimation of the ε-entropy Entrε[H
NN
n (σ,M,X), L2] of the class

HNN
n (σ,M,X) is essentially dependent on the generator function σ. So from the paper

[21] it follows that there exists a real-analytical sigmoidal function σ∗ such that ε-entropy
of the set HNN

n (σ∗,M,X) is equal to infinity for any ε > 0, n ≥ 3, M > 0. Analogous
statement holds for manifolds of a similar form HAI

n (ϕ,M,X). This fact poses a difficulty
for statistical estimates which in general require a finite ε-entropy.

We will consider the generator functions ϕ having the form such that the ε-entropy
of the manifolds HAI

n (ϕ,M,X) admits a finite value. Let Pd
s be the space of all real

polynomial on d variables of degree at most s. We define the following four classes of
functions:
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1. The class Ψs = {ψ} which consists of exponential functions of the form ψ(x) = ep(x),
where p ∈ Pd

s . For example, the Gaussian function e−|x|2 , |x|2 = x21 + ... + x2d, belongs to
the class Ψ2.

2. The class Θs = {θ} which consists of all rational functions of degree at most s, i.e.
the functions of the form θ(x) = p(x)/q(x) where p, q ∈ Pd

s , and q(x) 6= 0 for all x ∈ R
d.

3. The class Λs = {λ} which consists of all functions of the form

λ(x) =
1

1 + ep(x)
, p ∈ Pd

s .

For example, the standard function λ(x) = 1/(1 + e−x1) which belongs to the class Λ1, is
widely used in neural networks.

4. Let G = Gs1,l be any domain in the space R
d bounded by l polynomials surfaces of

degree at most s1, that is a domain of the form

G = {x : pi(x) ≤ 0, i = 1, ..., l},

where p1, ..., pl are some polynomials from the space Pd
s1 . We define the class Γs1,s2,l = {γ}

consisting of functions of the form γ(x) = χG(x)q(x), where χG is the characteristic
function of the domain G, and q is a polynomial from the space Pd

s . For example, the
function γ(x) = h(x1), where h(t) = max{t, 0}, t ∈ R is the Heaviside function, belongs
to the class Γ1,0,1.

Denote by Φ the class of functions which consists of the union of all functions from
classes Ψs, Θs, Λs and Γs1,s2,l. Let n ∈ N, M > 0 and K ≥ 1 be fixed numbers. Consider
the notation for manifolds

HAI
n (ϕ) =















HAI
n (ϕ,M, 2X), if ϕ ∈ Ψs

HAI
n (ϕ,M,X), if ϕ ∈ Θs

HAI
n (ϕ,M,X,K), if ϕ ∈ Λs

HAI
n (ϕ,M,X), if ϕ ∈ Γs1,s2,l.

Henceforth we denote by c, c′ and Ci, ci, c
′
i, i = 0, 1, ..., the positive constants depending

only on r, d, s, s1, s2, l,K and M . For two positive sequences an and bn, n = 0, 1, ... we
write an � bn if there exist positive constants c1 and c2 such that c1 ≤ an/bn ≤ c2 for all
n = 0, 1, .... Also we denote log a = log2 a.

Lemma 2.1. [17] Let ϕ be any function from the class Φ. Then for any natural n and

any positive number ε the following inequality holds

Entrε[HAI
n (ϕ), L2(µ)]} ≤ nT (ε, ϕ, d,M,K),

where

T (ε, ϕ, d,M,K) =















c1d
s log2 Mε , if ϕ ∈ Ψs

c2d
2 log n log M

ε , if ϕ ∈ Θs

c3d
2 log n log KM

ε , if ϕ ∈ Λs
c4d

2 log n log M
ε , if ϕ ∈ Γs1,s2,l.
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Lemma 2.1 implies the following statement:

Consequence 2.2. Let σ be the sigmoidal function such that the function ϕ(x1, ..., xd) =
σ(x1) belongs to the class Φ. Denote HNN

n (σ) = HAI
n (ϕ). Then the following inequality

holds:

Entrε[HNN
n (σ), L2(µ)] ≤ nT (ε, σ, d,M,K).

2.2. Approximation by Neural Networks

Let σ : R → R be a sigmoidal function. Consider the neural network manifoldHNN
n (σ)

(see (5). In this section we state a theorem for the approximation of Sobolev class using
the manifold HNN

n (σ).

Consider the space L2(X,µ) of functions defined on R
d with support on the set X and

the norm

‖f‖L2(Rd,µ) =

(
∫

X
|f(x)|2 dµ(x)

)1/2

.

Denote by BL2 the unite ball in the space L2(R
d, µ). For any function f ∈ L2 we denote

by F(f) or f̂ the Fourier transform of f

f̂(u) = (2π)−d/2
∫

Rd

f(x) eiu·x dx,

where u ∈ R
d. The inverse Fourier transform will be denoted by F−1. In the space L2

define the derivative of order α as

Dαf := F−1{|u|αF(u)},

where |u| =
√

u21 + · · ·+ u2d, and Fourier transform and derivatives are understood in the

distribution sense. Let r be any positive number. In the space L2 = (X,µ) consider the
Sobolev class of functions

W r
2 := W r

2 (X,µ) := {f : max
0≤α≤r

‖Dαf‖L2(X,µ) ≤ 1}.

Introduce the class Ψr of functions ψ satisfying following conditions. Let ψ be some
function in the space L1(R). Using the function ψ, we construct an adjoint function ϕ on
R satisfying the equality

∫ ∞

0
a−1ψ̂(aw) ¯̂ϕ(aw) da = 1 (7)

for any w, where ψ̂ and ϕ̂ are the Fourier transforms of ψ and ϕ, respectively. The function
class Ψr, where r > 0, consists of all functions ψ ∈ L2(R)

⋂

L1(R) for which there exists a
function ψ satisfying (7) and such that for all ρ ∈ [0, r], Dρψ ∈ L2(R) and D−ρϕ ∈ L1(R).
We set

Bϕ = max
0≤ρ≤r

{‖Dρψ|L2(R), ‖D−ρϕ‖L1(R)}. (8)
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Examples: One can easily verify that the functions

ψ(t) =
√
2e−t

2/2,
t+ 1

3
χ[−1,0](t) +

1− t

3
χ[0,1](t),

where χ∆ is the characteristic function of the segment ∆, belong to the class Ψr. The
corresponding adjoint functions ϕ are respectively

ϕ(t) =
√
2(1− t2)e−t

2/2, −χ[−1,0](t) + χ[0,1](t).

We observe that in many neural networks applications it is usual to use sigmoidal functions
which approach a constant non-zero value at infinity. However, by taking suitable linear
combinations of such functions, one can always obtain functions vanishing at infinity which
belongs to L1(R). For example, for the sigmoidal function σ(t) we require σ(t+1)−σ(t) =
ϕ(t), and limt→−∞ ϕ(t) = limt→∞ ϕ(t) = 0.

Theorem 2.3. ([18],[19]) Let the measure µ ∈ M∗ and σ be any sigmoidal function such

that the function ψ(t) = σ(t + 1) − σ(t) belongs to the class Ψr. Then for any function

f ∈W r
2 (X,µ) there exists a function h ∈ HNN

n (σ) such that

1. ‖f − h‖L2(X,µ) ≤
c1Bϕ lnn

nr/d
,

2. |h(x)| ≤ c2Bψn
(1/2−r/d)+ for all x ∈ X.

where (t)+ = max{t, 0}, and c1, c2 are some constants depending only on r and d.

In [18] the following result was proved: Let σ be any sigmoidal function such that the
function ψ(t) = σ(t + 1) − σ(t) belongs to the class Ψr. Then for any function f ∈ W r

2

there exists a function h ∈ HNN
n (σ) such that

‖f − h‖L2(X,µ) ≤
c1Bϕ lnn

nr/d−δ
, (9)

where δ is any number of the form δ = δ′ + kε/d, δ′ ∈ (0, 1), ε ≥ n−δ
′

and k is the least
natural number satisfying r ≤ kd

2 +kε. Note that the inequality (9) is proved in [18] for the
case of Lebesgue measure µ. In the common case, taking into consideration the property
of the measure 0 < C1 ≤ dµ/dx ≤ C2, x ∈ X, the inequality (9) also holds. From the

inequality (9) the statement 1 follows. Indeed, we set ε = 1
lnn , δ =

(ln 1/ε)
lnn . Then from (9)

we obtain

‖f − h‖L2(X,µ) ≤
c1Bψn

δ+kε/d

nr/d
=
c1Bψ lnn

nr/d
.

The second inequality in Theorem 2.3 is proved in ([19], Th. IV.1).
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3. Estimates of the accuracy confidence function estimator and the

average accuracy m-deviation

We consider the measure class M∗ which consists of all measures µ defined on X such
that the Radon-Nikodym derivative satisfies the inequalities C1 ≤ dµ/dx ≤ C2 for all x ∈
Ω, and C1, C2 are absolute positive constants. Also we require that the generator function
belongs to the class Φ

⋂

Ψr (for the definitions of the classes Φ and Ψr see Subsection
2.1 and 2.2, respectively). In our work we obtain asymptotic two-sided estimates for the
accuracy confidence functions

ACLS
m,n := ACLS

m (W r
2 ,H

NN
n (ϕ,M),M∗, ε),

and

ACm,n := ACm(W
r
2 ,H

NN
n (ϕ,M),M∗, ε).

Theorem 3.1. ([23]) Let r > d/2 and ϕ be any function from the class Φ
⋂

Ψr. Let
∈ N, ε > 0 be any numbers, and n(ε) = [c0ε

−r/d logd/r 1/ε]. Then there exist the positive
constants ci, i = 0, ..., 4 and also ε0 > 0 and ε−m, ε

+
m satisfying

c1

mr/(2r+d)
≤ ε−m ≤ ε+m ≤ c2 logm

mr/(2r+d)
,

such that

ACLS
m,n(ε) ≥ ACm,n(ε) ≥ ε0, for ε < ε−m,

and

e−c3mε
2 ≤ ACm,n(ε) ≤ ACLS

m,n(ε) ≤ e−c4mε
2

, for ε ≥ ε+m.

From Theorem 4.1 it follows that the least square method is almost-optimal (with addi-
tional logarithmic factor) for the accuracy confidence functionACm(W

r
2 ,H

NN
n(ε)(ϕ,M),M∗, ε),

that is, it realizes the universal algorithm for the function.

Theorem 3.2. Let r > d/2 and ϕ be any function from the class Φ
⋂

Ψr. Then there

exist the positive constants c5, c6 such that

c5m
− 2r

2r+d ≤ em(W
r
2 ,H

NN
m (ϕ,M),M∗)

≤ eLSm (W r
2 ,H

NN
m (ϕ,M),M∗) ≤ c6m

− 2r

2r+d ln2m.

Theorem 3.2 shows that the least square method is almost-optimal (with additional
logarithmic factor) for the average accuracy m-deviation, that is, it realizes the universal
algorithm.
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4. Learning by Radial Basis Function Networks

Consider the Euclidian norm ‖x‖ = (
∑d

i=1 x
2
i )

1/2 in the space R
d. Let ϕ(t) be a

function defined on R+. Consider the radial function ϕ(‖x‖) on R
d.

In this section we consider the problem of Leaning by Radial Basis Function Networks,
that is we estimate the accuracy confidence function estimator and the average accuracy
m-deviation, while when as the hypothesis space we consider the space

HRBF
n (ϕ) =

{

h(‖ • ‖) =
n
∑

k=1

ckϕ(‖ •+ak‖) : ck ∈ R, ak ∈ R
d

}

, (10)

consisting of all possible linear combinations of n radial basis functions .
Note that HRBF

n (ϕ) coincides with the affine-invariant manifold HAI
n (ϕ), where the

function ϕ is defined as ϕ(x) = ‖x‖ and the dictionary is the set Ad = (I,Rd), where I is
the unit matrix. From here and from [24], the results below follow.

Theorem 4.1. Let r > d/2, m ∈ N, ε > 0 be any numbers, and n(ε) = [c0ε
−r/d logd/r 1/ε].

Let ϕ be any univariate polynomial of degree n(ε). We set

ACLS
m,n(ε) := ACLS

m (W r
2 ,H

RBF
n(ε) (ϕ,M),M∗, ε),

and

ACm,n(ε) := ACm(W
r
2 ,H

RBF
n(ε) (ϕ,M),M∗, ε).

Then there exist the positive constants ci, i = 0, ..., 4 and also ε0 > 0 and ε−m, ε
+
m satisfying

c1

mr/(2r+d)
≤ ε−m ≤ ε+m ≤ c2 logm

mr/(2r+d)
,

such that

ACm,n(ε) ≥ ACLS
m,n(ε) ≥ ε0, if ε < ε−m,

and

e−c3mε
2 ≤ ACm,n(ε) ≤ ACLS

m,n(ε) ≤ e−c4mε
2

, if ε ≥ ε+m.

From Theorem 4.1 it follows that the least square method is almost-optimal (with addi-
tional logarithmic factor) for the accuracy confidence functionACm(W

r
2 ,H

NN
n(ε)(ϕ,M),M∗, ε),

that is, it realizes the universal algorithm for the function.

Theorem 4.2. Let r > d/2, n ∈ N and ϕ be any univariate polynomial of degree n. Then
there exist the positive constants c5, c6 such that

c5n
− 2r

2r+d ≤ en(W
r
2 ,H

RBF
n (ϕ,M),M∗)

≤ eLSn (W r
2 ,H

RBF
n (ϕ,M),M∗) ≤ c6n

− 2r

2r+d ln2 n.

Theorem 3.2 shows that the least square method is almost-optimal (with additional
logarithmic factor) for the average accuracy m-deviation, that is, it realizes the universal
algorithm.
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