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Some properties of (X, X)) and (I*°, X, X)-Bessel multi-
pliers
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Abstract. We use the concepts of a and S-duals to define (Xg4, X;) and (I°°, X4, X;)-Bessel
multipliers in Banach spaces. We investigate the properties of these multipliers when the symbol
m € [°°, X4. In particular, we study the possibility of compactness and invertibility of these
multipliers depending on their symbols and corresponding sequences.
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1. Introduction

In [8], Schatten presented operators of the form Y my ¢ @1y, where {¢p} and {1y} are
orthonormal families. Balazs replaced these orthonormal families with Bessel sequences
to define Bessel multipliers [1]. Bessel multipliers for p-Bessel sequences in Banach spaces
and for g-Bessel sequences in Hilbert spaces were introduced in [6] and [7], respectively.
Multipliers play important roles in both pure and applied mathematics. Gabor multipliers
which are also known as Gabor filters are used in the field of acoustics.

Throughout this paper, X is a Banach space, X is a complex sequence space; that is, a
vector space whose elements are sequences of complex numbers. All sequence spaces will
be assumed to include ¢, the set of finitely nonzero sequences. A sequence space X, is
called a BK-space, if it is a Banach space and all of the coordinate functionals {ar} — ax
are continuous. A BK-space is called solid if whenever {ax} and {b;} are sequences with
{br} € X4 and |ay| < |bg|, for each k € N, then it follows that {a;} € X4 and ||{ax}| x, <
II{bx}x,- A sequence space X4 is called an AK-space if it is a topological vector space
and {a} = lim,, p,({ar}) for each {ar} € X4, where p,({ar}) = (a1, a2, ...,a,,0,...).

In [4], K6the has assigned for each sequence space Xy another sequence space X, a-dual
(Kothe-dual) of Xy which is defined by:

Xg = {{ak} : Z |akbk| < 00, V{bk} S Xd} s

k=1
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and X 5 for the 8-dual of X, defined by:

o
Xg = {{ak} : Zakbk converges, V{bi} € Xd} .

k=1

It is evident that X§ C X 5 . We note that o and §-duals of a BK-space X, are BK-spaces
with respect to the norms

Har}lla = sup > |axbyl, (L.1)

{ox}HIx, <17

and
o0

[{artlg = sup | D arbyl, (1.2)
HorHx, <1 =

respectively. Also if Xy is a solid BK-space, then X¢ = X 5 [5, 10].

Remark 1.1. We note that if X, is a solid BK-space, the norms defined in (1.1) and (1.2)
are equivalent by the open mapping theorem.

It is proved in [5, 10], that the spaces X and X 5 are isometrically isomorphic with
the norm defined in (1.2), when Xy is a BK-AK-space. So by Remark 1.1, we deduce that
if X is a solid BK-AK-space, then the spaces X and X7 are isomorphic with the norm
defined in (1.1) and there exist K, K’ > 0 such that

K'|{ax}lxs < Haetla < Kl{ar}lx:, {ar} € Xj =~ X7, (1.3)
where K’ can be set to 1.

Lemma 1.2. [3] Let {ex} be a Schauder basis of a normed space X. The canonical
projections P, : X — X, where Py (D> 2, aje;) = > iy ae;, satisfy:

(i) dim (P, (X)) = n;

(ZZ) PPy = PPy = Pmin(m,n);

(iii) Pp(x) = x in X for every x € X.

Definition 1.3. Let X be a Banach space and X, be a BK-space. A countable sequence
{9k }72, in the dual X* is called an Xg4-frame for X if

(1) {ox(f)} € Xa, fEX;

(ii) the norms ||f|lx and ||[{gx(f)}||x, are equivalent i.e., there exist constants A, B > 0
such that

Allfllx < [Hor(HHIx, < Bllfllx, feX. (1.4)

The constants A and B are called lower and upper Xy-frame bounds, respectively. If (i)
and the upper condition in (1.4), are satisfied, then {g} is called an X -Bessel sequence
for X with bound B. We call {g;} a tight X -frame if A = B and a Parseval X -frame if
A=B=1.
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Definition 1.4. Let {g;} be a sequence of elements in X* and {my} C C. We call {g;}
a weighted Xy-frame for X, if the sequence {mygy} is an Xy-frame for X.

Proposition 1.5. [2] Suppose that X4 is a BK-space for which the canonical unit vectors
{er} form a Schauder basis. Then {gi} C X* is an X-Bessel sequence for X with bound
B if and only if the operator

0o
T : {dk} — degk,
k=1

is well defined (hence bounded) from Xy into X* and ||T|| < B.

Definition 1.6. A sequence {fr} C X is called an X4-Riesz basis for X, if it is complete
in X and there exist constants A, B > 0 such that

Al{er}llxa < 1) enfull < Bl{erdlxa: {er} € Xa.
k=1

The constants A and B are called lower and upper Xy4-Riesz basis bounds, respectively.
If {fx} is an X4-Riesz basis for span;{ fi}, then {fi} is called an X4-Riesz sequence.

Proposition 1.7. [9] Suppose that X, is a reflexive BK-space for which the canonical unit
vectors {ex} form a Schauder basis. Assume that {41} C X* is an X-Riesz basis for X*
with lower bound A and upper bound B. Then there exists a unique sequence {12;6} cX,
which is an Xg-Riesz basis for X with lower bound % and upper bound %, such that

= w()dr, feX,
k=1

g(Wr)g, geX™.
1

o0
g =
k=
This sequence {iy,} is the unique biorthogonal to {1y}.

Throughout the following sections, X is a reflexive Banach space and Xy is a solid,
reflexive, BK-space such that the canonical unit vectors {e;} form a Schauder basis for
X4

2. Main Results

In the following theorem by the concepts of o and -duals, we investigate boundedness
of multipliers in two different cases:

Theorem 2.1. Suppose that {¢;} C X is an X;-Bessel sequence for X* with bound B'.
Then the following statements hold:
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(i) Let {1} € X*. Suppose that there exists P > 0 such that ||[¢x|| < P for each k € N,
and m = {my.} € Xq. Then the operator M = My, 4, () X — X defined by:

M, (61), () me/)k Yor, [ € X,

1s well defined and bounded.
(ii) Let {1pp} € X* be an X4-Bessel sequence for X with bound B, and m = {my} € [*°.
Then the operator M' = M’ (), () : X — X defined by:

m,(éx) (wk kawk ¢k7 fEXv

1s well defined and bounded.

Proof. (i) First, we prove that {d ;_; mgr(f)or}o, is Cauchy in X. Consider
m,n € N, m > n. Then we have

| Z mebr(Heell = sup [ Y mphe(f)dr(9)l
k=n+1 geX™,llgll<1 k=n+1

< P s S el

gex+ llgl<1, 574

Now, by (1.1) and the proof of the first Proposition in [11], we have

| mek Dexll < PlfIIIHme} = po({med)llxg,  sap  [[{ox(9)} o

Bt gex* gl <1

hence by (1.3), there exists K > 0 such that

| Z mppr(F)orll < KP[fI[[{me} — pa({m})llx, sup {or(9) Hx;

k=n+1 geX* |lgll<1
KPB'|fl[[{mx} — pn({mu})l x,-

Since the canonical unit vectors {er} form a Schauder basis for X, by Lemma 1.2,
limy, [[{m} — pn({mi})l|x, = 0. Therefore {>°)_; mrp(f)or}o, is Cauchy in X and so
M is well defined.

Now we show that M is bounded.

IN

IM(HI = ||kawk okl = sup \mek

geX*llgl<1 =

IN

PIFL swp 3 lmiens

geX* llgll<1 2
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by (1.1) and (1.3), we have

MO < PlFIHKmedx,  sup  [{or(9)Hla

geX* llgll<1

IN

KPB||f{mu}lx,, fe€X.

So, [|M]| < KPB'[[{ms}|x,-
(ii) Since {my} € [*°, we have

It ()] < Il |[vor ()] < I{meHloo [vr (), k€ N.
Now, since {yx(f)} € X4 and X is a solid Bk-space, {my¢(f)} € X4 and we have

o (F) Hixa < I{ma oo [{90% () 3]- (2.1)

Now we prove that {> 7, mur(f)dr oo, is Cauchy in X. Consider m,n € N, m > n.
Then by (2.1) and (1.1), we have

1> meve(Herll = sup | Y mui(f)dk(9)|
k:n-l—l QEX*,HgHSl k:n+1
< Hmute(H)} = pa{mue(HPx,  sup  [{ok(9)}Hla-
geX™ |lglI<1

Similar to the proof of (i), {d ;_; mer(f)ér}oe; is Cauchy in X4. Therefore, M’ is well
defined.
By a similar argument we can show that [|M'|| < KBB'||m/||ec. <

The operator M in Theorem 2.1, is called (X4, X;)-Bessel multiplier and M’ is called
(1°°, X4, X;)-Bessel multiplier. The sequences {¢} and {1y} are called corresponding
sequences of operators M and M’ and the sequence m = {my} is called the symbol of
these operators.

Example 2.2. Let X = X; = [P, 1 < p < oo. Suppose that {E,}°, is the se-
quence of coefficient functionals associated to the canonical basis {e;}7°, of X4. Denote
{Q/)k}zozl = {%El, EQ, Q%El, E3, %El, }, {¢k}20:1 = {61, €2,€3, €4, €5, } and {mk}gozl =
{1, %, %, i, %, ...}. Then ||¢g]] < 1, for each k € N, {¢}32, C [P is a Parseval [9-frame for
19 and {my}32, € IP. Therefore, My, (4,), (1) 15 @ (I7,19) Bessel multiplier.

Example 2.3. Let X = X3 =17, 1 < p < oco. Suppose that {E}}3°, is the sequence of
coefficient functionals associated to the canonical basis {ex};2, of X. Denote {y3}72, =
{Eryp2, and {@p 72, = {er i Then My 4.y () 18 @ (I°°,1p, l;)-Bessel multiplier

Remark 2.4. We note that by the definition of (Xg4, X)-Bessel multiplier, M can be
expressed by:
M =T, DT,
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where Ty, is the synthesis operator of X j-Bessel sequence {¢y} and the mappings D, :
I — X4, Dp({cx}) = {mier} and U : X — [, U(f) = {¢x(f)}, are well defined
operators. Also, by the definition of (I°°, X4, X)) Bessel multiplier, M’ can be shown by:

M' =Ty, DyUy,,

where Ty, is the synthesis operator of Xj-Bessel sequence {¢y}. The mapping D,, : Xq —
Xa, Din({ck}) = {mycy} is a well defined operator and Uy, is the analysis operator of the
Xg4-Bessel sequence {9 }. In this case, M’ can also be written by:

M = T4, Umypy,»

where Ty, is the synthesis operator of Xj-Bessel sequence {¢}, and Uy, y, is the analysis
operator of the weighted X4-Bessel sequence {1y}, where {my} is a sequence of weights.

3. COMPACTNESS AND INVERTIBILITY OF MULTIPLIERS

In this section, we investigate the compactness and invertibility of Bessel multipliers
and determine the formula for (M’)~! when M’ is invertible.

Theorem 3.1. The following assertions are true:

(1) If M is an (Xq4, X))-Bessel multiplier, then M is a compact operator.

(ii) If M’ is a (1°°, Xg4, X}})-Bessel multiplier and m = {my} € co, then M' is a compact
operator.

Proof. (i) We define the finite rank operator

K
Mg(f) =Y muthr(f)éx-
k=1

Then we have

o0
IM=Mgll = s s | S m(H)enlo)
fexvllfllglgEX*vllgllgl k:K+1
o0

< sup sup Y [midi(f)on(9);
fexvllfllgl gEX*vllgllgl k:K+1

now by (1.1), (1.3) and the proof of the first proposition in [11] we have

M — Mgl < Pl{m} —px({me})llx, sup  [{or(9)}a
geX™ |lgl<1

KPB'|[{my} — px ({me})lx,-

IN

Since the canonical unit vectors {er} form a Schauder basis for X, by Lemma 1.2
limy |[{m} — pr({mi})|| = 0 and so M is a compact operator.
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ii) For a given m € ¢, let m®") = (my, my,...,m;,0,0,...). Then by part (ii) of Theorem
2.1, we have

. /
= My (60|

|lm —m®|KBB.

! !
1My (60,0000 = Mo (), (0|

IN

Since m € cg, limy ||m — m®||o = 0, and the proof is evident.«

Here is an example which shows that a (I°°, X4, Xj)-Bessel multiplier may not be a
compact operator, if m = {my} ¢ c.
Example 3.2. Let X = X3 =17, 1 < p < oo. Suppose that {E}}72, is the sequence of
coefficient functionals associated to the canonical basis {e;}7°; of X. Denote {3} =
{Er}e, and {or}2, = {er )iz, Then My (4, (p,) is an (I°°,1;,1,)-Bessel multiplier but
it is not a compact operator.

Definition 3.3. The sequence {my} is called semi-normalized, if

0< iréf\mk| < sup |myg| < oo.
k

Theorem 3.4. Suppose that M) ()20 is a (1°°, X4, X))-Bessel multiplier and m =
{my} is semi-normalized. Also assume that {1} C X* is an X-Riesz basis for X* and
{¢r} C X is an X4-Riesz basis for X. Then M' is an invertible operator.

In this case (M')~! = M(’ L) W60 (60)’ where {1} € X and {¢} C X* are X4-Riesz basis
m_k Yk )

for X and X-Riesz basis for X*, respectively.

Proof. By Remark 2.4, M' = Ty, D,,,Uy, . Suppose that {¢} and {¢;} are X and
Xg-Riesz basis for X* and X, respectively. Then by Propositions 3.4, 4.5 and 4.7 in [9],
Ty, and Uy, are invertible and also Dy, since m is semi-normalized. Therefore M’ is an
invertible operator. By Proposition 1.7, there exist a unique X4-Riesz basis {@Ek} C X and
aunique X j-Riesz basis {gi;k} C X*, which are biorthogonal to {¢ } and {¢x }, respectively.
Since m is semi-normalized, - = {mik} € [* and we have

M1y i) © Mimon). ) (F) = M(,;),(u?k),(as;)(;mk¢k(f)¢k)
=1

m;

= 3 LS mn (Fén)
i=1 k=1

= Y LS i Nd0n
i=1 " k=1

= > ()i
=1

= f, feX
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Theorem 3.5. Suppose that M is an (X4, X)-Bessel multiplier on an infinite dimen-
stonal space X. Then M is not an invertible operator.

Proof. Since by Theorem 3.1, every (Xg4, Xj)-Bessel multiplier is a compact operator,
M can not be an invertible operator on X .«
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