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Abstract. The operators under consideration are generated by differential expressions with locally
bounded operator coefficients both on finite and infinite intervals. A relation between spectral and
oscillation properties of such differential operators of arbitrary order (even and odd) is investigated.
The operators in question may be both self-adjoint and non self-adjoint with block-triangular
matrix coefficients. Several well-known Sturm type Theorems, which were obtained by topological
methods, are obtained also by operator-theoretical methods. The results contained in this survey
for infinite systems, being applied to either finite systems or scalar problems, are at least as precise
as the results already known for those cases; and sometimes appear to be even more precise.
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1. Introduction

The oscillation theory of differential equations originates in the famous works (for-
merly, memoirs) by Sturm [93] – [95], together with the joint paper by Liouville and Sturm
[54]. Among those, one should mention above all the fundamental memoir by Sturm’of
1836 [94]. Since then, the theory of Sturm-Liouville type equations and the associated
boundary problems permanently attracts an attention of a growing number of special-
ists in mathematics, physics and engineering throughout the world due to the increasing
number of important applications in various fields. Namely, these are direct and inverse
scattering problems (in many important cases the Sturm-Liouville equation is identical
to the Schrödinger equation), oscillation theory, mathematical physics (both classical and
modern), the theory of periodic, almost periodic, and stochastic (non-ordered) systems
(e.g., crystal lattices with impurities), geometry (vector fields along geodesics), topology,
and symplectic geometry. Together with its various applications, the theory of Sturm-
Liouville problems is itself a nice subject for the new mathematical theories and methods
to be applied to, a sort of touchstone for those to become more sophisticated, to bring
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them into a comparison, to stimulate their creation and development (in particular, that
of computational methods of modern mathematics; see, e.g., [7]).

The bicentenary of Jacques Charles Francois Sturm (1803 – 1855) and the development
of the Sturm-Liouville theory till the present day have been made subjects of a conference
in Switzerland (Genève 2003). A report by B. Simon at this conference [92] was dedicated
to a review and new results on oscillation and Sturm type comparison theorems and
applications. The basic milestones of this theory have been described in a report by D.
Hinton [35] and W. N. Everitt [20]. The Collection of invited papers by participants of
The Bicentenary Colloquium in Geneva (published in 2005) [96] contains a number of
interesting works. Among those, in addition to the works cited above, let us mention
the report by J. Weidmann [99], M. M. Malamud [57], and also a Catalogue of Sturm-
Liouville differential equations produced by W. N. Everitt [21]. That very year (2005) our
monograph [89] has been published. That monograph was dedicated to a generalization
of the Sturm Oscillation Theory for infinite self-adjoint systems of differential equations
and the related topics.

In this survey we consider differential equations with bounded (for every value of a
variable) operator-valued coefficients in a separable Hilbert space H. Such equations are
equivalent to infinite systems of ordinary differential equations, and in the special case of
finite dimensional H they are reduced to finite systems of ordinary equations.

The purpose of this work is to demonstrate the way of generalizing the Sturm Oscil-
lation Theorem for self-adjoint differential equations of an arbitrary order with operator-
valued coefficients on finite and infinite intervals. An important special case of this result
is the Morse Index Theorem (see [65], [66], and also [61]).

An interesting topological interpretation of the Sturm theorems in the finite dimen-
sional case and their link to symplectic geometry was considered by V. I. Arnold [3], see
also [4]. Note that V. I. Arnold states in [3] that he has no claim on novelty of his results,
because in a very classical field like the Sturm Theory, it is hard to keep track of all the
predecessors. Some results of this [3] are deducible from the authors’ works [79], [82]. Ad-
ditionally, the final part of our survey contains a generalization of the Sturm Oscillation
Theory to non self-adjoint systems of differential equations with block-triangular matrix
coefficients. It should be noted here that V. A. Marchenko introduced a notion of gener-
alized spectral function R for a Sturm-Liouville operator with arbitrary complex valued
potential on the half-line [58], [59], which was transferred under his scientific supervision
to the case of finite and infinite non self-adjoint systems [60], [71]. The distribution (the
matrix in the case of systems) R acts on the topological space of test functions. The
spectral distribution R determines formulas of expansion in eigenfunctions and also allows
to solve the inverse problem of spectral analysis in the non self-adjoint case. In the case of
self-adjoint problems, R is generated by a non-negative measure (either scalar of matricial
in the case of systems). Here we use the specific form of spectrum and spectral matricial
distribution R for some classes of self-adjoint and non self-adjoint systems.

It is interesting to note that a large number of partial linear equations can be success-
fully investigation, being treated as Sturm-Liouville type equations of a single variable,
but with an operator-valued (unbounded) coefficient. This approach requires some special
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techniques to be applied, e.g., the theory of rigged spaces by Gel’fand and Kostyuchenko
[22], Berezanskiy [8], theory of hyperfunctions, etc. Latter developments, starting from M.
L. Gorbachuk [26], are contained in the monographs [27] – [28], [55], and review papers,
e.g., [29].

The Sturm oscillation theory, along with its various generalizations to the ordinary
differential equations and finite systems of those related to the spectral theory, hae been
considered in the monographs of F. Atkinson [6], N. Danford and J. T. Schwartz [16],
I. M. Glazman [24], A. L. Gol’denveiser, V. B. Lidskiy, and P. E. Tovstik [25], A. G.
Kostyuchenko and I. S. Sargsyan [48], B. M. Levitan and I. S. Sargsyan [51], L. A. Pastur
and A. L. Figotin [67], [68], C. A. Swanson [97], V. A. Yakubovich, V. M. Starzhinskiy
[105], [106], P. Hartman [33], F. A. Berezin and M. A. Shubin [10], H. Weyl [100] (see
also [101] – [103]). The sources listed above contain also an extended bibliography on the
subjects in questions.

The well-known monographs by V. A. Marchenko [58], [59] and B. M. Levitan [50]
are dedicated to direct and inverse problems of spectral theory for the Sturm-Liouville
operator in various settings.

A relation between oscillation and spectral properties for scalar differential equations
of an arbitrary even order were investigated in the works by M. G. Krein [49] and E.
Heintz [34] (see also [24]). A generalization of the Sturm Oscillation Theorem for systems
of differential equations of order 4, which arise in studying free oscillations of thin elastic
shells, is contained in the monographs by A. G. Aslanyan and V. B. Lidskiy [5], [25]. A
similar result for finite systems of even order in the case of simple spectrum can be found
in [37]. It should be noted that the ‘scalar’ formulations and proofs of those theorems,
which are based on the notion of determinant and compactness of the finite dimensional
sphere, become inapplicable in the infinite dimensional case. Our considerations also cover
a broad class of systems of odd order differential equations [80], [85], [89], in particular
canonical systems, for example, the Dirac systems on axis with operator-valued coefficients
[38]. Note that the results contained in this survey for infinite systems, being applied to
either finite systems or scalar problems, are at least as precise as the results already known
for those cases; and sometimes appear to be even more precise. Some of our results turn
out to be new even in the scalar and other special cases.

The oscillation properties for linear canonical systems have been investigated in var-
ious contexts. In the real case, they have been studied by V. B. Lidskiy [52] and V. A.
Yakubovich [104]. Some of their results have been transferred to the complex case by V.
I. Khrabustovskiy [45]. Another reference here is the work by V. I. Arnold [3] cited above.
The case of second order equations with operator valued coefficients has been studied in
the works by G. Etgen and J. Pawlowski [19], G. Etgen and R. Lewis [18].

We supply a topological interpretation of the Sturm oscillation theorems for differential
equations of an arbitrary order with locally bounded operator-valued coefficients; this
interpretation is compared to the operator approach. A link to the symplectic geometry
is considered.

A relation between spectral and oscillation properties of the problem on finite interval
or half-line for Sturm-Liouville differential equations with block-triangular matrix coef-
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ficients is investigated. These results are new and have been published by the authors
recently in [42]. In the case of equation with block-triangular matrix potential that rise
at infinity, matrix solutions are constructed which either rise or decrease at infinity; a
structure of the spectrum for differential operator with such coefficients is established; the
Green function is produced together with its series expansion; the Parseval equality is
proved [43], [44].

The present survey is based on the authors’ works [79] – [84], [42], [43], [44] their
monographs [85], [89], and the reports at the Conferences of the Ukrainian Mathematical
Congress 2001 [86] – [88], [40], and at the Conference in Varna (1981) [75]. Addition-
ally, some new results of the authors that extend the Sturm Oscillation Theory to non
self-adjoint systems of differential equations with block-triangular matrix coefficients are
included in [42] [43].

Note that non self-adjoint operators correspond to a description of non-closed physical
systems, and undoubtedly make a mathematical interest. In this connection we mention
a paper by Yu. L. Daletskii [14] and Section 7.5.3 ‘The Riemann-Hilbert Problem for
Triangular Matrices’ from the book by M. J. Ablowitz and A. S. Fokas [1]. Note also
papers [13] (for the self-adjoint case see [2]) and [91].

2. On the Relation Between Spectral and Oscillation Properties of the

Sturm-Liouville Matrix or Operator Problem

2.1. The Problem on a Finite Interval

Consider the following boundary-value problem for vector-valued functions with values
in a finite-dimensional or infinite-dimensional separable Hilbert space H:

l[y] := −(P (x)y′)′ +Q(x)y = λW (x)y (2.1)

cosA · P (0)y′(0)− sinA · y(0) = 0 (2.2)

cosB · P (b)y′(b) + sinB · y(b) = 0 (2.3)

Here P (x) > 0, W (x) > 0, Q(x), A, B, together with P−1(x), P ′(x), W−1(x) are all
bounded self-adjoint operators in H; the dependence on x ∈ [0, b] is uniformly continuous;
and

−π

2
I << A,B ≤ π

2
I. (2.4)

(The point −π
2 belongs to the resolvent sets of A and B. In the case dimH < ∞, this

restriction is removed. Here I denotes the identity operator in H.)

The differential expression

lW [y] := W−1(x)l[y] (2.5)
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with boundary conditions (2.1), (2.3) gives rise to a self-adjoint operator L in the Hilbert
space

H(0, b) = L2{H; (0, b);W (x)dx} (2.6)

with the inner product

< u, v >=

b∫

0

(W (x)u(x), v(x))Hdx.

Under the given conditions (including (2.4)), the operator L is lower semi-bounded (see
[71], p. 337 – 338, and [30]). If cosA = 0 and cosB = 0, the boundary conditions (2.2),
(2.3) become

y(0) = 0, (2.7)

y(b) = 0. (2.8)

Let us denote by L0 the operator corresponding to the boundary value problem (2.1),
(2.2), (2.8). In the case dimH = m < ∞, the problem (2.1) – (2.3) and the corresponding
self-adjoint operator L have purely discrete spectrum

λ1 ≤ λ2 ≤ λ3 ≤ . . . ,

However, this is not the case when dimH = ∞ (see [71]†, p. 340, and [27], p. 20). Let

λe = inf σe(L), λ◦
e = inf σe(L

◦)

be the greatest lower bounds of the essential spectrum σe of operators L and L◦ (the
eigenvalues of infinite multiplicity belong to σe; in the case dimH < ∞ we have λe = +∞).

If λ is an eigenvalue of the problem (2.1) – (2.3), we denote its multiplicity by æ(λ).
If λ is not an eigenvalue of (2.1) – (2.3), we set æ(λ) = 0. Let us denote by N(λ) the
number of eigenvalues λk < λ of the problem (2.1) – (2.3), counting multiplicities. The
corresponding quantities N(λ), æ(λ), λn for the operator L◦ will be denoted by N◦(λ),
æ◦(λ), λ◦

n, respectively.

Let Y (x, λ) be the fundamental matrix or operator solution to (2.1) with the initial
conditions

Y (0, λ) = cosA, P (0)Y ′(0, λ) = sinA. (2.9)

Set

nulY (x, λ) = dimKerY (x, λ), def Y (x, λ) = dimCoker Y (x, λ).

†It follows from the example constructed therein that the spectrum of the problem (2.1) – (2.3) may prove
even absolutely continuous.
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Theorem 1 ([79], [85]; see also our monograph [89], Theorem 1.1, p. 3).
For λ ≤ λ◦

e ≤ ∞ we have
∑

x∈(0,b)

nulY (x, λ) = N◦(λ)(≤ ∞), (2.10)

∀λ ∈ R nulY (x, λ) = def Y (x, λ) (2.11)

(the sum here is taken over all x ∈ (0, b) such that nulY (x, λ) 6= 0).

Theorem 2 ([79], [85]; see also our monograph [89], Theorem 1.2, p. 3).
For the problem (2.1) – (2.3), the following estimates hold. If dimH < ∞, we have

N(λ)−min{rank cosB,dimH −æ(λ)} ≤ N0(λ) ≤ N(λ). (2.12)

Assume that dimH = ∞ and λ ≤ λe.
If rank cosB < ∞, then λe = λ◦

e and

N(λ)− rank cosB ≤ N◦(λ) ≤ N(λ). (2.13)

If rank cosB = ∞, then λe ≤ λ◦
e and

0 ≤ N◦(λ) ≤ N(λ). (2.14)

The equalities may take place in the leftmost inequalities of this Theorem if the left hand
sides of these inequalities are non-negative.

Corollary 1.
1) In the scalar case (dimH = 1), for the problem (2.1) – (2.3), by (2.10) and (2.12) we
have ∑

x∈(0,b)

nulY (x, λn) = n− 1 (2.15)

and this is equivalent to the classical Sturm Oscillation Theorem.
2) If dimH < ∞, λn > λn−1, and æ(λn) = dimH, then (2.15) holds.
3) If dimH ≤ ∞ and æ◦(λ◦

n) = 1, then (2.15) holds for the problem (2.1), (2.2), (2.8)
(since in this case N◦(λ◦

n) = n− 1).

Note that if dimH > 1 and if the general boundary condition (2.3) holds, then the
equation (2.15) can fail, as it is shown in the following example.

Example 1. For the diagonal system

−y′′k = λyk, y′k(0) = 0, y′k(1) + (−1)kyk(1) = 0

we have Y (x, λ) = I2 cos
(
x
√
λ
)
. The eigenvalues are simple and are determined by the

equation λ
(
tan

√
λ
)2

= 1, (λ1 < 0). Here

∑

x∈(0,1)

nulY (x, λ2n) = 2n− 2,

which contradicts to (2.15).
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Remark 1. Let dimH ≤ ∞. Consider the problem (2.1), (2.7). In this case, in the
terminology of Morse, nulY (x, λ) coincides with the index of the point x with respect to
the endpoint x = 0 and the equation (2.1) for the given λ. On the other hand, the number
N◦(λ) of eigenvalues of the problem (2.1), (2.7), (2.8) less than the given λ, is the maximal
dimension of the subspace of H(0, b) on which the corresponding Dirichlet integral

Dλ[u] =

b∫

0

{
(P (x)u′, u′) + ((Q(x)− λW (x))u, u)

}
dx

is negative (the Morse quadratic form (i.e. Hessian of the action function (see [61], § 13)
or index form of the geodesic (see [31], 4.5)) can be reduced to Dλ[u]). Thus, as it was
noted in the Introduction, Theorem 1 contains the Morse Index Theorem.

Morse Index Theorem ([61], Sec. 4.6 or [31], Sec. 15, see also our mono-
graph [89], p. xxii, and Remark 1.1., p.5) Index of Hessian for the action function

E∗∗ : TΩγ × TΩγ → R

(i.e. maximal dimension of subspaces TΩγ on which the form E∗∗ is negative definite)
is finite and equal to the number of points of the geodesic γ(t), 0 < t < 1, such that
γ(t) is conjugate to γ(0) along γ, where every conjugate point is counted according to its
multiplicity. (In Morse terminology, this multiplicity is also called the index of point with
respect to the endpoint t = 0 and the equation (2.1). The sum of indices of the point t
along a given geodesic segment is called ”Morse index of the given geodesic segment.”)

The works [72] – [85], [89], contain a generalization of the Sturm Oscillation Theorem
for the infinite system of second order differential equations

−
(
P (x)y′ +R(x)y

)′
+R∗(x)y′ +Q(x)y = λW (x)y, (2.16)

with the boundary conditions

cosA · y[1](a)− sinA · y(a) = 0, (2.17)

cosB · y[1](b) + sinB · y(b) = 0, (2.18)

where y[1](x) := P (x)y′(x) +R(x)y is the quasi-derivative.
Set

Y [x, λ,B] := cosB · Y [1](x, λ) + sinB · Y (x, λ). (2.19)

Theorem 3 ([78]; see also our monograph [89], Proposition 1.1, p. 4).
For the problem (2.16) – (2.18) with λ ≤ λe(≤ ∞) one has

∑

x∈(a,b)

nulY [x, λ,B] = N(λ), (2.20)

nulY [x, λ,B] = def Y [x, λ,B],
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provided that for a ≤ x ≤ b

H2,2(x, λ,B) := cosB ·
{
−Q(x) + λW (x) +R∗(x)P−1(x)R(x)

}
cosB+

+ sinB · P−1(x)R(x) cosB + cosB · R∗(x)P−1(x) sinB + sinB · P−1(x) sinB � 0,

a ≤ x ≤ b, (2.21)

and, in addition to (2.4), the operator ha is lower semi-bounded, self-adjoint in the closure
of its domain D(ha), where

ha := − (cosA sinB + sinA cosB)−1 (cosA cosB − sinA sinB) ≥ c · ID(ha)
, c ∈ R.

(2.22)

Remark 2. The condition (2.21) is always true for λ big enough, and the condition (2.22)
is always true if dimH < ∞, i.e., for finite systems, when the operator ha is self-adjoint.

Note that with cosB = 0, Theorem 3 transforms to Theorem 1 (i.e., Theorem 1.1 of
our monograph [89]).

In the general case the proof of Theorem 3 goes similarly to that of Theorem 1.1 of [89],
using analogs of Lemmas 1.1, 1.2 and that of Theorem 1.3 from [89]. Under assumptions
of Theorem 3, those analogs are established in our case for Y [x, λ,B] instead of Y (x, λ) in
a similar way, after one applies the condition (2.22) for the operator ha. Theorem 3 allows
one to prove the Arnold Alternation Theorem in the generalized form. Let us formulate
this theorem using our definitions.

Theorem 4. (on the alternation; V. I. Arnold [3]; see also our monograph [89],
Theorem 4.9, p. 120)
If the Hamiltonian function H(t) is positive definite on Lagrangian planes α and β, then
the numbers ν of non-transversality instants with respect to the planes α and β of the
Lagrangian plane that evolves in correspondence to the equation

J
d

dt

(
y

y[1]

)
= H(t, λ)

(
y

y[1]

)
, (2.23)

can differ among themselves in an arbitrary interval at most by the number of degrees of
freedom

|να − νβ| ≤ dimH(< ∞). (2.24)

Note that in [3], a real finite dimensional space H is considered, λ = 0. (2.23) is
derived by reducing the system

l[y] ≡ −(P (t)y′ +R(t)y)′ +R∗(t)y′ +Q(t)y = λW (t)y (2.25)

to a first order system for the vector function col{y, y[1]} in the double space H⊕H, where

J =

(
0H −IH
IH 0H

)
, 0H and IH are the zero and the identity operators in H, respectively,

H(t, λ) =

(
−Q+ λW +R∗P−1R −R∗P−1

−P−1R P−1

)
. (2.26)
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Corollary 2 ([3]). On an interval containing dimH + 1 non-transversality instants with
respect to α, there is a non-transversality instant with respect to β.

Suppose that for given A and, correspondingly, B and B1, the semi-boundedness con-
dition (2.22) is satisfied (in the case dimH < ∞, this condition is satisfied automatically).
Since the Hamiltonian H(t, λ) (2.26) is positive on both Lagrangian planes α and β, we
have (2.21) and, analogously

H2,2(t, λ,B1) � 0, a ≤ t ≤ b, (2.27)

whence we get (2.20) and, correspondingly,

∑

x∈(a,b)

nulY [x, λ,B1] = N1(λ), (2.28)

where Y [x, λ;B1] is defined by (2.19) with B1 instead of B, and N1(λ) is the analogue of
N(λ) for the case of condition (2.18) with B1 instead of B. (We remind the reader that
we assume that the conditions (2.4) for A, B, and B1 are also satisfied.) Now by Lemma
1.4 of [89], p. 14, we have

|N(λ)−N1(λ)| ≤ p := Def{Λ} ≤ dimH, (2.29)

where Λ is a symmetric operator equal to the common part of two self-adjoint operators
corresponding to the boundary-value problems (2.16) – (2.18) withB and, correspondingly,
B1 in (2.18). Hence by Theorem 4.2 of [89], p. 95, we have

Def{Λ} = rank{sinB1 · cosB − cosB1 · sinB}. (2.30)

From this,by (2.29), (2.28), (2.20), we obtain the following generalization of the Alternation
Theorem 4.

Theorem 5 ([78]; see also our monograph [89], Theorem 4.10, p. 122).
Under the above conditions, we have:

∣∣∣∣∣∣

∑

t∈(a,b)

nulY [t, λ;B]−
∑

t∈(a,b)

nulY [t, λ;B1]

∣∣∣∣∣∣
≤ Def{Λ} =

= rank{sinB1 · cosB − cosB1 · sinB} ≤ dimH ≤ ∞. (2.31)

Corollary 3. On an interval containing 1+Def{Λ} points where nulY [t, λ;B] > 0, there
is a point where nulY [t, λ;B1] > 0 (if Def{Λ} < ∞).
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2.2. The Problem on a Half-Line

By L′ we will denote the minimal with respect to x = ∞ operator in H(0,∞) (2.6)
defined by the expression lW [y] (2.5) and the boundary condition at zero (2.2). We assume
that L′ is lower semi-bounded and denote by LF the Friedrichs extension of L′. We also
use the notation λF

e = inf σe(LF ) ≤ ∞, and denote the eigenvalues of LF by

λF
1 ≤ λF

2 ≤ . . . (< λF
e ).

Theorem 6 ([80] – [85]; see also our monograph [89], Theorem 1.4, p. 20).
Let L′ denote the minimal with respect to x = ∞ operator in H(0,∞) = L2{H; (0,∞);W (x)dx}
defined by the expression W−1(x)l[y] (2.1) and the boundary condition (2.2). Assume that
L′ is lower semi-bounded. Let NF (λ) be the number of eigenvalues λF

n < λ correspond-
ing to the Friedrichs extension LF of L′, and let N0(λ) be the number of jumps λ0

n < λ
(counting multiplicities) of the spectral operator-valued function ρ(λ) obtained from spec-
tral functions of the problems of type (2.1), (2.2), y(bj) = 0 by passing to the limit as
b = bj → ∞.

Then for λ ≤ λF
e we have

∑

x∈(0,∞)

nulY (x, λ) = NF (λ) = N0(λ).

Theorem 7 ([80] – [85]; see also our monograph [89], Theorem 1.4, p. 21).
In the assumptions of Theorem 6, let Λ denote a self-adjoint extension of L′ in H(0,∞)
such that on the left of a fixed µ < λF

e

λn(Λ) = λF
n (< µ), (n = 1, 2, . . . )

Let L be an arbitrary semi-bounded self-adjoint extension of L′ in H(0,∞), and let

p = min
Λ

Def
{
L|D(L)∩D(Λ)

}
,

where Def T denotes the deficiency number‡ of an operator T . Let NL(λ) be the function
counting eigenvalues < λ of the operator L. Then for all λ < µ, the following holds:

NL(λ)− p ≤
∑

x∈(0,∞)

nulY (x, λ) = NF (λ) = NΛ(λ) ≤ NL(λ).

If Def L′ = d and λ is not an eigenvalue of the closed operator L′, then for all λ ≤ µ we
have

NL(λ)−min{p, d− æL(λ)} ≤
∑

x∈(0,∞)

nulY (x, λ) = NF (λ) ≤ NL(λ).

‡For a semi-bounded operator, the two deficiency numbers are equal.
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Corollary 4. If dimH = 1, then

∑

x∈(0,∞)

nulY (x, λL
n) = n− 1,

which corresponds to [16], [51].

Here is a consequence of Theorem 6.

Corollary 5. Under assumptions of Theorem 6, suppose that rank cosA in (2.2) is finite
and the restriction L′′ of the operator L′ by the condition y(0) = 0 is non-negative (the
last condition is satisfied if, for example, Q(x) is a non-negative operator for all x). Then

∑

x∈(0,∞)

nulY (x, 0) ≤ rank cosA. (2.32)

3. Semi-Bounded Operators of Even Order

Consider the self-adjoint differential equation of order r = 2n with operator coefficients
from B(H)

l[y] =

r∑

k=0

iklk[y] = λW (x)y, (3.1)

where

l2j = Djpj(x)D
j , p∗j(x) = pj(x),

l2j−1 =
1

2
Dj−1{Dqj(x) + q∗j (x)D}Dj−1, D = d/dxj .

Here, the operator-valued coefficients pj(x), qj(x), together with their derivatives of order
up to and including j, uniformly continuously depend on x, and the coefficient at the
highest order derivative pn(x) in the equation (2.1) has a bounded inverse in H for all
x ∈ (a, b), including a and b if they are finite.

Denote by L the minimal differential operator in H(a, b) determined by the differential
expression

lw[y] = W−1(x)l[y]. (3.2)

A linear condition of the form

Ua[y] = 0, (3.3)

where Ua is a linear map from H(a, c), a < c ≤ b, into a Hilbert space Ha, will be
called a boundary condition at a if every two vector-valued functions, which coincide in a
neighbourhood of a, either both satisfy this condition or they both don’t.

Denote by Lξ the closure of the operator in H(a, ξ), a < ξ ≤ b, determined by the
differential expression (3.2) and the condition (3.3), on the smooth functions that vanish
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in a neighbourhood of ξ. We call Lξ the minimal operator with respect to the end-point
ξ corresponding to (3.2), (3.3).

We call the boundary condition Ua[y] = 0 self-adjoint at the point a, if the operator
Lb is symmetric, and the functions y ∈ D(L∗

b) satisfy this boundary condition. Then Lξ

is symmetric for all ξ ∈ (a, b).

Similarly, we define the self-adjoint condition

Ub[y] = 0 (3.4)

at b. The general form of self-adjoint conditions for equations of arbitrary order with
bounded operator-valued coefficients is derived in [72], [73].

An operator L inH(a, b) has a self-adjoint extension determined by separated boundary
conditions if and only if there exist self-adjoint boundary conditions for this operator at
the points a and b. The restriction of the operator L∗ to a manifold satisfying those
conditions is a self-adjoint extension of L.

A semi-bounded differential operator in H(a, b) always has self-adjoint extensions with
separated boundary conditions; for example, the Friedrichs extension. It is easy to demon-
strate that a lower semi-bounded differential operator should be of an even order r = 2n,
and its highest coefficient pn(x), which is assumed to have a bounded inverse at every x in
the closure of (a, b), should be, in addition, strictly positive at every x, that is pn(x) � 0.

On the other hand, the assumption of lower semi-boundedness for the essential spec-
trum is insufficient to guarantee that the highest coefficient pn(x) is strictly positive or at
least non-negative, as one can see from the following example.

Example 2. Suppose the differential operator L with operator-valued coefficients is an
orthogonal sum of two operators: L = L1 ⊕ L2 in such a way that L1 acts in the
space H1(a, b) = L2 {H1; (a, b);W1(x)dx} and is lower semi-bounded, hence its essen-
tial spectrum is a fortiori lower semi-bounded. Here dimH1 ≤ ∞. Then we let L2

act in the space H2(a, b) = L2 {H2; (a, b);W2(x)dx} with dimH2 < ∞, so that L2 has
a strictly negative highest coefficient and a purely discrete spectrum (certainly, lower
unbounded). In this case the operator L = L1 ⊕ L2 that acts in the space H(a, b) =
H1(a, b) ⊕H2(a, b) = L2 {H1 ⊕H2; (a, b); (W1 ⊕W2)dx} has the same essential spectrum
as L1: σe(L) = σe(L1) > −∞. In particular, the essential spectrum of L is lower semi-
bounded, while its highest coefficient is not a positive operator-valued function, as at every
x ∈ (a, b) it is an orthogonal sum of a positive operator from B(H1) and a negative operator
from B(H2).

The even order operators on a finite interval always have the separated self-adjoint
boundary conditions without semi-boundedness assumption [72], [73]. Meanwhile, an even
order operator on the half-line (0,∞) may fail to have self-adjoint separated boundary
conditions with dimH ≤ ∞. To see that sort of example, consider a separated infinite
system of scalar second order equations in which the system formed by the initial two
equations, generates a symmetric operator with deficiency indices (2;3) or (3;2) [36], and
the rest of equations form a diagonal system with all the scalar operators having deficiency
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indices (1;1). Then L has deficiency indices (∞,∞) and admits self-adjoint extensions; on
the other hand, the extension of L determined by the self-adjoint boundary condition at
x = 0 has the deficiency indices (0;1) or (1;0) and has no self-adjoint extensions.

Condition 1. In what follows we assume that for the minimal operator L in H(α, β)
there exist self-adjoint separated boundary conditions on any interval (α, β) ⊆ (a, b).

For equations of arbitrary order with bounded coefficients on (a, b), self-adjoint sepa-
rated boundary conditions have the following form (see [72] – [73]):

Ua[y] ≡ cosA · y∨(a)− sinA · y∧(a) = 0, (3.5)

Ub[y] ≡ cosB · y∨(b) + sinB · y∧(b) = 0, (3.6)

−π

2
In � A,B ≤ π

2
In, (3.7)

that is, the point −π
2 belongs to the resolvent set of the self-adjoint operators A, B in

Hn = H ⊕H ⊕ . . . ⊕H (In is the identity operator Hn),

y∨(x) = col
{
y(x), y′(x), . . . , y(n−1)(x)

}
, y∧(x) = col

{
y[2n−1](x), y[2n−2](x), . . . , y[n](x)

}
,

(3.8)
y[k] are quasi-derivatives corresponding to the operation l[y] (2.1) and defined as in [72] –
[73].

For the problem on an unbounded interval (a,∞), a ≥ −∞, in the absolutely indeter-
minate case, self-adjoint separated boundary conditions have been in [39]. An existence
criterion and a description of all separated self-adjoint boundary conditions for an expres-
sion of even order on half-line are contained in [62]. It was demonstrated in [64] that for
first order symmetric systems such conditions exist only for Hamiltonian systems.

As for the operator-valued Weyl-Titchmarsh characteristic function, the work [46],
among other results, contains necessary and sufficient conditions providing that such char-
acteristic operator-valued function corresponds to a boundary problem with separated
(Sturm) boundary conditions, both in the case of finite and infinite intervals.

Let Y (x, λ) ∈ B(H,H) be the fundamental solution of the problem (3.1), (3.3), with
H being a Hilbert space.

If a > −∞, the fundamental solution Y (x, λ) of the problem (3.1), (3.3) can be ob-
tained as a solution of (3.1) with the Cauchi operator data

Y ∧(a, λ) = cosA ·K, Y ∨(a, λ) = sinA ·K. (3.9)

Here, as in (3.8), the operators Y ∧(a, λ) and Y ∨(a, λ) are given by Y ∧h = (Y h)∧, Y ∨h =
(Y h)∨, ∀h ∈ H, K ∈ B(H,Hn), K−1 ∈ B(H,Hn). Since the initial data is independent
of λ, Y (x, λ) is an entire function of λ.

If H = Hn, one can set K = In. In what follows, we will assume this setting wherever
possible.

If a = −∞ or a is a finite singular point, a construction of the fundamental solution of
the problem (3.1), (3.3) is not reduced to the Cauchi problem. However, in several cases
the fundamental solution can be constructed explicitly (see [53], [90], [75]).
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Denote by σd(T ), σe(T ), the discrete and the essential spectra of an operator T , re-
spectively, nulT = dimKerT , Def T = dimCokerT .

The existence of fundamental solution Y (x, λ) ∈ B(H,H) for the equation (2.1) of
arbitrary order, both even and odd, with the boundary condition (2.3) and with dimH =
r

2
dimH, λ ∈ C \ σe(Lξ), has been established in [81], [41]. The fundamental solution

Y (x, λ) could be made analytic in λ in a neighbourhood Λρ of the subset Λ := R \
σe(Lξ) of complex plane. Another facts proved in those papers are self-consistency of the
fundamental solution Y (x, λ) for λ ∈ Λ, the relation nulY ∧(x, λ) = nulY ∧∗(x, λ). Also it
is demonstrated for λ ∈ R\σe(L0

x) that Y (x, λ) is Fredholm (here L0
x is the extension of the

operator Lx in H(a, x) by the condition y∧(x) = 0, i.e., it is Friedrichs for semi-bounded
Lx, σe(Lξ) does not depend on ξ, and is void with the regular endpoint a > −∞). In
[63] the fundamental solution is constructed for a proper extension (not necessarily self-
adjoint) of a symmetric differential operator of an even order with arbitrary deficiency
indices.

Consider a minimal with respect to the endpoint b ≤ ∞ differential operator Lb of an
even order r = 2n with operator-valued coefficients. Assume it to be lower semi-bounded.

Denote by N(λ) the number of eigenvalues λk < λ of the operator L̃, determined by
the problem (3.1), (3.3), (3.4), with each eigenvalue counted according to its multiplicity
(the latter is denoted by æ(λk)). In the case of regular endpoints a or b, the self-adjoint
boundary conditions in them have the form (3.5), (3.6). If λ is not an eigenvalue of the
problem in question, we set æ(λ) = 0. The quantities N(λ), æ(λ), λk for the Friedrichs
extension LF

b of the operator Lb will be denoted by NF (λ), æF (λ), λF
k , respectively. With

b < ∞ one has LF
b = L0

b , where L0
b is the operator corresponding to the problem (2.1),

(2.3), y∧(b) = 0. Thus the index 0 is about to be used along with the index F .

Theorem 8 ([80] – [85]; see also our monograph [89], Theorem 4.1, p. 91).

When λ < λe

(
L̃
)
:= inf σe

(
L̃
)
one has

N(λ)− p ≤
∑

x∈(a,b)

nulY ∧(x, λ) = NF (λ) ≤ N(λ), (3.10)

where p = Def
{
L̃
∣∣∣D(LF

b ) ∩D(L̃)
}
. If λ is not an eigenvalue of Lb, then with λ < λe

(
L̃
)

one has

N(λ)−min{p,Def Lb − æ(λ)} ≤
∑

x∈(a,b)

nulT∧(x, λ) = NF (λ) ≤ N(λ) (3.11)

(if b < ∞ is a regular endpoint, p = rank cosB, with B coming from (2.32), Def Lb =
n · dimH). If the following condition is satisfied

λe

(
LF
ξ

)
> λe

(
LF
b

)
for ξ ∈ (a, b), (3.12)

in particular, if the endpoint a > −∞ is regular, then (3.10) is also true for λ = λe

(
L̃
)
,

p < ∞. (The sum here is taken over all x ∈ (a, b) where nulY ∧(x, λ) 6= 0. The lower
bound in (3.10), (3.11), if non-negative, can be attained.)
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Remark 3. If a > −∞ and for some λ ∈ R there exists a fundamental solution Y (x, λ)
of the problem (3.1), (3.3) such that the operator Y ∧(x, λ) is Fredholm for all x ∈ (a, b),
when λ ≤ λe

(
LF
b

)
.

Corollary 6. If λk > λk−1 for LF
b , and for this k one has

∑

x∈(a,b)

nulY ∧(x, λk) = k − 1, (3.13)

and if æ(λk) = n · dimH < ∞ and λk

(
L̃
)
> λk−1

(
L̃
)
, b < ∞, then (3.13) is also true

for L̃.

In particular, for a scalar second order equation one has Y ∧(x, λ) = Y (x, λ), and (3.13)
contains the classical Sturm Oscillation Theorem, together with its extensions to the case
of non-real coefficients (these are allowed at the first order derivative, hence the solution
Y (x, λ) is non-real), and to the case of infinite interval, since for r = 2 (3.13) holds for
−∞ ≤ a < b ≤ ∞ and for L̃.

Definition 1. A solution Y (x, λ) ∈ B(H,H) of (3.1) with λ ∈ R is said to be self-
consistent if for ξ ∈ (a, b) there exists a self-adjoint boundary condition

Uξ,λ[y] := cosAξ,λy
∨(ξ)− sinAξ,λy

∧(ξ) = 0, (3.14)

which is satisfied at x = ξ by all the functions of the form y(x, λ) = Y (x, λ)h (here Aξ,λ

is a self-adjoint operator in Hn).

An interesting topological interpretation of the Sturm theorems in the finite dimen-
sional case and their link to symplectic geometry was considered by V. I. Arnold [3], but
with no claim on novelty of his results. The latter was substantiated in [3] by observing
that in a very classical field like Sturm theory, it is hard to keep track of all the prede-
cessors. Some results of this interesting paper is deducible from the author’s works [79],
[82].

Definition 2. A Lagrange plane in H ⊕H is said to be vertical if it contains a non-zero
vector {y, z} with y = 0.

Theorem 8 announced in [80] and proved in [82], [83] (in particular, in the case of
second order equation of the form

−(P (x)y′)′ +Q(x)y = λW (x)y, (3.15)

the Theorem is proved in [79]), implies

Corollary 7. Assume that rank cosA in (2.2) is finite, and the restriction L′′ of the
operator L′ given by the additional condition y∧(0) = 0 is non-negative. Then

∑

x∈(0,∞)

nulY ∧(x, 0) ≤ rank cosA. (3.16)
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In fact, the Friedrichs extensions L1 and L0 of the operators L
′ and L′′, respectively, are

in addition finite dimensional extensions of their intersection Λ, whose deficiency indices
are (rank cosA, rank cosA). In view of this, it follows from Lemma 1.4 of [85], [89] that

N1(0)− rank cosA ≤ N0(0).

Since the operator L0 is non-negative, one has N0(0) = 0, whence we deduce (3.16) in
view of the equality in (3.10) with λ = 0.

The Corollary 7 contains the Non-Oscillation Theorem form [3], where it was formu-
lated for a real finite dimensional matrix Sturm-Liouville equation with W (x) = I.

4. Theorems of Comparison, Alternation, and the Theorem on Zeros for

Equations with Matrix and Operator-Valued Coefficients

Consider the operation l[y] (3.1) of an even order r = 2n and associate it with the
form l∆[y, y], the Dirichlet integral over the interval ∆:

l∆[y, y] =

∫

∆





n∑

j=0

(
pj(x)y

(j), y(j)
)
+

i

2

n−1∑

j=0

[(
q∗j+1(x)y

(j+1), y(j)
)
−

−
(
qj+1(x)y

(j), y(j+1)
)]}

dx.

Theorem 9 ([80] – [85]; see also our monograph [89], Theorem 4.2, p. 95).
Let −∞ < a < b < ∞, Y1(x), Y2(x) be the fundamental solutions of problems of the form

(3.1), (3.5) l(k)[Yk] = 0, k = 1, 2, with A = Ak in (3.5), respectively. The operators L
(k)0
b

are assumed to be lower semi-bounded and

inf σe(L
(2)0
b ) > 0, Wk(x) ≡ I, r = 2n, l

(1)
(a,b)[y, y] ≤ l

(2)
(a,b)[y, y] (4.1)

for the vector-functions that vanish in a neighbourhood of b. If

rank
{
Y ∨∗
2 Y ∧

1 − Y ∧∗
2 Y ∨

1

}
x=a

= m < ∞,

which is equivalent to rank {sinA2 · cosA1 − cosA2 · sinA1} = m < ∞, then for any β ∈
(a, b] one has ∑

x∈(a,β]

nulY ∧
1 (x) ≥

∑

x∈(a,β]

nulY ∧
2 (x)−m. (4.2)

The latter of the conditions (4.1) is satisfied, in particular, if for j = 0, 1, . . . , n

p
(1)
j (x) ≤ p

(2)
j (x), q

(1)
j (x) = q

(2)
j (x), x ∈ (a, b). (4.3)

If l(1) = l(2), the summing in (4.2) can be done in x ∈ [α, β] ⊂ (a, b]. If dimH < ∞,
one can sum in (4.2) in x ∈ [α, β]. Also, under the condition (4.3), after replacement of
m by n · dimH, one has

∑

x∈[α,β]

nulY ∧
1 (x) ≥

∑

x∈[α,β]

nulY ∧
2 (x)− n · dimH. (4.4)
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Corollary 8. If l(1) = l(2), then for any [α, β] ⊂ (a, b] one has
∣∣∣∣∣∣

∑

x∈[α,β]

nulY ∧
1 (x)−

∑

x∈[α,β]

nulY ∧
2 (x)

∣∣∣∣∣∣
≤ m, (4.5)

and if
∑

x∈[α,β]

nulY ∧
1 (x) ≥ m+1, then [α, β] contains at least one point where nulY ∧

2 (x) ≥ 1.

In particular, with dimH < ∞ one has m ≤ n · dimH, hence Theorem 9 implies the
Heinz-Rellich Comparison and Alternation Theorems [34], [24], sec. 44. The above Alter-
nation Theorem is a kind of refinement of the well-known Sturm Alternation Theorems in
the finite dimensional case, which are due to M. Morse [65], G. B. Birkhoff [11], W. Reid
[70]. This theorem also implies a comparison theorem, which is close in its formulation to
that of V. I. Arnold [3]. Corollary 5 contains the Theorem on Zeros [3] in a refined and
generalized form.

We reproduce here the Theorem on Zeros from [3]. Let H be real, dimH < ∞, λ = 0,
the matrices P (x) and Q(x) in (3.15) are real and symmetric, P (x) is positive definite for
all x ∈ [a, b], −∞ < a < b < ∞.

The Lagrange plane that evolves according to (3.15), under our assumptions is given
by the equation

Y ∗(x, 0)z − Y ′∗(x, 0)P (x)y = 0, {y, z} ∈ H ⊕H, (4.6)

for some A = A∗ in (2.9), and its verticality moments are those x ∈ (a, b) where detY (x, 0) =
0.

Theorem 10. (Theorem on Zeros [3], see also our monograph [89], Theorem
4.7, p. 115)
On a segment containing 1 + dimH moments of verticality of one Lagrangian plane, any
other Lagrangian plane (4.6) (i.e., the plane related to the solution Y1(x, 0) instead of
Y (x, 0) with A1 instead of A in (2.9)) becomes vertical at least once. Moreover, the dif-
ference between the moments of verticality of two arbitrary Lagrangian planes, evolving
under the same system, on any segment of the time axis does not exceed dimH.

Now consider the Comparison Theorem from [3]. The subjects of that work are systems
with 2n×2n matrices H1(t) and H2(t), so that both matrices at each t are positive definite
on a fixed Lagrange plane α. Those systems are of the form

J
d

dt

(
u

v

)
= Hj(t)

(
u

v

)
, (4.7)

where j = 1, 2, the vectors u and v are in the same space H, dimH = n, J =

(
0n −In
In 0n

)
,

with In and 0n being the identity and the zero n × n matrices. Denote by N(Hj) the
number of non-transversality instants to α of a Lagrange plane that evolves under (4.7)
and the corresponding j = 1, 2.
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Theorem 11. (Comparison Theorem [3], see also our monograph [89], Theorem
4.8, p. 115)
If H1(t) ≥ H2(t), then N(H1) ≥ N(H2)− n.

We are about to demonstrate that a close version of this Comparison Theorem follows
from our Theorem 9 related to an even order r equation in an infinite dimensional space
H, as a special case with dimH < ∞ and r = 2. Suppose that the canonical systems (4.7)
are given in an infinite dimensional ‘double’ Hilbert space, containing the vectors u(t) and
v(t) at every t.

Every Lagrange plane α in H ⊕H can be defined by the equation

cosA · u− sinA · v = 0, (4.8)

where A = A∗ is an arbitrary self-adjoint operator in H. Conversely, given A = A∗, the
equation (4.8) determines a Lagrange plane in H ⊕H with respect to a skew Hermitian

scalar product

[(
u

v

)
,

(
s

w

)]
= (v, s) − (u,w) (see [72], [73]).

Let us substitute (
y

z

)
= ΦA

(
u

v

)
, (4.9)

where ΦA is an operator in H ⊕H with block 2× 2 matrix

ΦA =

(
cosA − sinA
sinA cosA

)
,

and the operator A is chosen according to (4.8) corresponding to a given Lagrange plane
α, on which the matrices Hj(t) are positive definite. Then the non-transversality instants
to α of a Lagrange plane that evolves under (4.7), are in a correspondence to the instants

t, where for a matrix (operator) solution

(
Y

Z

)
of the equation, determining the evolution,

one has nulY (t) > 0. Here nulY (t) := dimKerY (t), so that nulY ∗(t) = nulY (t),

Y ∗(t)Z(t)− Z∗(t)Y (t) = 0, Y ∗(t)Y (t) + Z∗(t)Z(t) > 0,

and the evolution of a Lagrange plane, managed by (4.7), is given by

Z∗(t)y − Y ∗(t)z = 0, (4.10)

where the evolving Lagrange plane at every t is formed by all the vectors

(
y

z

)
that satisfy

(4.10).

By virtue of our substitution (4.9), the equation (4.7) transforms to

J
d

dt

(
y

z

)
= HA

j

(
y

z

)
, (4.11)
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where HA
j (t) = ΦAHj(t)Φ

∗
A, and the Lagrange plane α is now given by y = 0. Due to the

positivity condition on α for the forms corresponding to the operators Hj(t), we have also
the positivity in H of the operators HA

j (t):

HA
j (t) =

(
HjA

11 (t) HjA
12 (t)

HjA
21 (t) HjA

22 (t)

)
. (4.12)

Here (HA
j (t))

∗ = HA
j (t). In view of the above observations, the equations (4.11) with

j = 1, 2 are equivalent to the Sturm-Liouville systems of the form

lj [Y ] = −(PjY
′ +RjY )′ +Rj ∗ Y ′ +QjY = 0, (4.13)

where Pj = P ∗
j = (HjA

22 )
−1 > 0 and Qj = Q∗

j . Conversely, the system (4.11) – (4.12)
corresponding to (4.13), is derived when one sets there z = Pjy

′ +Rjy and

HA
j (t) =

(−Qj +R∗
jP

−1
j −R∗

jP
−1
j

−P−1
j Rj P−1

j

)
. (4.14)

The quantities Pj =
(
HjA

22

)−1
, Qj , Rj are in one-to-one correspondence withHjA

11 ,H
jA
22 >

0, HjA
12 =

(
HjA

21

)∗
, and these are also linked to the operator blocks of the matrices Hj(t)

in view of the relation HA
j (t) = ΦAHj(t)Φ

∗
A.

Now observe that by virtue of (4.14), the quadratic form HA
j (t) can be written in the

form (
HA

j (t)

(
y

z

)
,

(
y

z

))
= (P−1

j (z −Rjy), z −Rjy)− (Qjy, y). (4.15)

On the other hand, the Dirichlet integral for the equation (4.13) is an integral of the
quadratic form

Dj

[(
y

y′

)(
y

y′

)]
:= (Pj(t)y

′, y′) + (Rjy, y
′) + (R∗

jy
′, y) + (Qjy, y), (4.16)

which has a form of 2× 2 block matrix

Dj(t) =

(
Qj R∗

j

Rj Pj

)
. (4.17)

The assumptions of Comparison Theorem [3] require the inequality

HA
1 (t) ≥ HA

2 (t) (4.18)

for the matrices (4.14) as well as for the forms (4.15). If one requires additionally that
R1(t) = R2(t), the above inequalities become equivalent to

D1(t) ≤ D2(t), (4.19)
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which is sufficient to make the condition (4.1) of our Theorem 9 satisfied (with r = 2),
and, consequently, to make true our claim (4.2). Thus, under the additional assumption
R1(t) = R2(t), the Comparison Theorem of [3] follows from our Theorem 9 as the special
case with r = 2, dimH < ∞, because in this case one has m < dimH. However, if one
withdraws the requirement R1 = R2, the inequalities (4.18) and (4.19) fail to be equivalent,
so the Corollary 8 of our Theorem 9 does not cover the Comparison Theorem of [3] and is
not covered by the latter. As for the general case of our Theorem 9 with r > 2, it covers
the Hamiltonian systems with matrices, which may happen to be strictly positive on no
Lagrange plane, unlike the assumptions of [3].

5. Estimating the Number of Eigenvalues in a Gap of the Essential

Spectrum

Consider the self-adjoint differential equation (3.1) of an arbitrary order r ≥ 1, either
even or odd, with operator-valued coefficients from B(H). As in Sec. 3 above, we assume
the Condition 1 to be satisfied, hence either r ·dimH = ∞ or r ·dimH is an even number
(see [85], [89]).

Without assuming semi-boundedness for the minimal operator L ⊆ L̃, where L̃ is some
self-adjoint extension of L, we suppose that C2r is the smoothness class of the coefficients
of lW [y] (3.2). Then the operation

l2W [y] = lW [lW [y]] (5.1)

can be treated as an ordinary differential one.
Denote by M the closed minimal differential operator generated in H(a, b) by the

operation (5.1). Since the operators M and (L̃)2 coincide on C∞
0 , they also coincide on

the domain of M . Therefore M ⊆ (L̃)2, hence (L̃)2 is a self-adjoint extension M̃ of the
positive symmetric operator M .

Denote by Mb the restriction of the operator M̃ by the minimality condition with

respect to b. Let also p = Def
{
M̃ |D(M̃)

⋂
D(MF

b )
}
, N(λ, µ) be the number of eigenvalues

λk ∈ (λ, µ) of the operator L̃, counting their multiplicities æ(λk).
Let Y (x, λ) ∈ B(H,H), be the fundamental solution of the problem (3.1), (3.5), where

H is a Hilbert space. Set

Y (x, λ, µ) = {Y (x, λ);Y (x, µ)} : H2 → H,

Y 4(x, λ, µ) = col
{
Y (x, λ, µ);Y ′(x, λ, µ); . . . ;Y (r−1)(x, λ, µ)

}
. (5.2)

Theorem 12 ([80], [85], [89], see our monograph [89], Theorem 4.6, p. 108).
Let (α, β) be a gap in the essential spectrum of the operator L̃, α < λ < µ < β. Then one
has

N(λ, µ) − p ≤
∑

x∈(a,b)

nulY 4(x, λ, µ) ≤ N(λ, µ), (5.3)
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so that nulY 4(x, λ, µ) = nulY 4∗(x, λ, µ). If æLb
(λ) = æLb

(µ) = 0, where Lb ⊆ L̃ is a
minimal operator with respect to the endpoint b, then one can replace p in (5.3) with

min {p,Def Mb − æ(λ)− æ(µ)} .

If a > −∞, then the Theorem is also true for λ = α, µ = β.

Remark 4. If b < ∞, then 0 < p =
r

2
dimH, Def Mb = r · dimH. (It is clear from

the inequality p > 0 that with b < ∞ the Friedrichs extension MF
b can not be represented

as a square of self-adjoint differential operator L̃, that is, (MF
b )1/2 is not a differential

operator, although MF
b ≥ 0).

Another approach to studying the discrete levels in spectral gaps, based on the phase
function method, has been developed in [76], Theorem 4, for the scalar Schrödinger equa-
tion. A result similar to Theorem 12 for the scalar Sturm-Liouville equation is contained
in the paper by F. Gesztesy, B. Simon, and G. Teschl [23].

Remark 5. Consider the self-adjoint operator L̃, generated in H(−∞,∞) by the sym-
metric first order system

l[y] = Jy′ +H(x)y = λy, (5.4)

where J∗ = J−1 = −J , H(x) is a uniformly continuously differentiable operator-valued
function from B(H2). In the case when

J =

(
0 I
−I 0

)
, H(x) =

(
P (x) Q(x)
Q(x) −P (x)

)
, P = P ∗ ∈ B(H), Q = Q∗ ∈ B(H),

we get a self-adjoint Dirac operator on the axis.

Suppose that the essential spectrum of the operator L̃ does not cover the entire axis,
and let (α, β) be a gap in its essential spectrum. With λ ∈ (α, β), denote by Y (x, λ) ∈
B(H,H2) the fundamental solution of (5.4) and set

Y (x, λ, µ) = {Y (x, λ);Y (x, µ)} : H2 → H2.

Denote by N(λ, µ) the number of eigenvalues λk ∈ (λ, µ) of the operator L̃, counting
their multiplicities æ(λk).

Theorem 13. § Let (α, β) be a gap in the essential spectrum of the operator L̃. With
α < λ < µ < β one has

∑

x∈(−∞,∞)

nulY (x, λ, µ) = N(λ, µ).

§In the finite dimensional case this Theorem has been proved in [38].
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6. The Sturm Type Oscillation Theorems for Equations with

Block-Triangular Matrix Coefficients

Consider the differential equation with matrix coefficients

l[y] = −(P (x)y′)′ +
i

2
((Q(x)y)′ +Q(x)y′) + V (x)y = λW (x)y, (6.1)

so that the coefficients P (x), Q(x), together with their derivatives, as well as the coeffi-
cients V (x), W (x), depend continuously on x ∈ [0,∞).

Suppose that the coefficients P (x), Q(x), V (x) of the equation (6.1) have a block-
triangular form, in particular, the potential V (x) is of the form

V (x) =




V11(x) V12(x) . . . V1r(x)
0 V22(x) . . . V2r(x)
. . . . . . . . . . . .
0 0 . . . Vrr(x)


 (6.2)

and the weight W (x) is a block-diagonal matrix.
The diagonal blocks Pkk(x), Vkk(x), Qkk(x), Wkk(x), k = 1, r, are Hermitian mk ×mk

matrices with mk ≥ 1 (in particular, with mk = 1 one has real scalar functions). Suppose

that
r∑

k=1

mk = m.

Denote by Hm the m-dimensional Hilbert space. A vector h ∈ Hm will be written in
the form h = col(h1, h2, . . . , hr), with hk, k = 1, r, being a vector from Hmk

.

6.1. The Problem on a Finite Interval

Suppose that at the ends of the interval (0, b), b < ∞, one has the boundary conditions:

A · y′(0)−B · y(0) = 0, (6.3)

C · y′(b)−D · y(b) = 0, (6.4)

where A and B, C and D are commuting block-triangular matrices of the same structure
as the coefficients of the differential equation, subject to the conditions

det
(
A2 +B2

)
6= 0, det

(
C2 +D2

)
6= 0. (6.5)

Denote by Y (x, λ) the matrix solution of the equation (6.1), satisfying the initial
conditions

Y (0, λ) = A, Y ′(0, λ) = B.

This solution also has a block-triangular structure

Y (x, λ) =




Y11(x, λ) Y12(x, λ) . . . Y1r(x, λ)
0 Y22(x, λ) . . . Y2r(x, λ)
. . . . . . . . . . . .
0 0 . . . Yrr(x, λ)


 ,



Sturm Type Theorems for Differential Equations of Arbitrary Order 25

with Ykk(x, λ), k = 1, r, being mk ×mk matrices, mk ≥ 1.
Consider the system

lk[yk] = −
(
Pkk(x)y

′
k

)′
+
i

2

(
(Qkk(x)yk)

′ +Qkk(x)y
′
k

)
+Vkk(x)yk = λWkk(x)yk, k = 1, r,

(6.6)
with the boundary conditions

Akk · y′k(0)−Bkk · yk(0) = 0, (6.7)

where yk(x) is a vector function with values in Hmk
.

Denote by L the differential operator generated by the differential expression lW [y] =
W−1(x)l[y] and the boundary conditions (6.3) and (6.4). Let Lk be the self-adjoint op-
erator generated by the differential expression lk,w[z] = W−1

kk (x)lk[z] and the boundary
conditions (6.7) and

Ckk · y′k(b)−Dkk · yk(b) = 0, (6.8)

where Akk, Bkk, Ckk, Dkk are Hermitian mk ×mk matrices that satisfy conditions similar
to (4.19).

If the matrix C in the boundary condition (6.4) has the form

C =




0 C12 . . . C1r

0 0 . . . C2r

. . . . . . . . . . . .
0 0 . . . 0


 , (6.9)

then we denote the operator L by L0. If the boundary condition (6.8) acquires the form

yk(b) = 0, (6.10)

then we denote the operator Lk by L0
k.

Denote by σk =
⋃

s {λsk}s, k = 1, r, the set of eigenvalues for the self-adjoint operator
Lk, by Nk(λ) the set of eigenvalues λsk < λ with a fixed k, counting their multiplicities.
The quantities λsk, Nk(λ) for the operator L0

k are denoted by λ0
sk, N

0
k (λ), respectively.

Lemma 1 ([42]).
The spectrum of L is discrete, real, and it coincides to the union of spectra of the self-
adjoint operators Lk, i.e.,

σ(L) = σd(L) =
r⋃

k=1

σk. (6.11)

Let us enumerate the eigenvalues of L0 in an increasing order

λ0
1 ≤ λ0

2 ≤ . . . ≤ λ0
n ≤ . . .

and denote by N0
a (λ) the number of eigenvalues λ0

n < λ of L0, counting their algebraic
multiplicities.
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Suppose Ykk(x, λ) is a matrix solution of the differential equation (6.6) with Hermitian
coefficients. Although this matrix, in general, can fail to be Hermitian, it was proved in
[79], [80], [85], [89] that

nulYkk(x, λ) = Def Ykk(x, λ), (6.12)

where, given an arbitrary matrix T , we use the conventional notation nulT = dimKerT ,
Def T = dimCoker T .

Withm ≥ 1, denote by nula Y (x, λ) the algebraic multiplicity of zero as an eigenvalue of
the matrix Y (x, λ) under fixed x and λ. In particular, withm = 1 we have nula Y (x, λ) = 1
if x is a root of the scalar equation Y (x, λ) = 0, and nula Y (x, λ) = 0 if x is not a root of
this equation.

Theorem 14 ([42]).
Suppose that the operator L0 is generated by the differential expression lW [y] with matrix
block-triangular coefficients, which satisfy the conditions listed above, and by the boundary
conditions (6.3), (6.4), with the matrix C of the form (6.9). Assume that the blocks Pkk(x)
of the coefficient at highest derivative P (x) and the blocks Wkk(x) of the matrix weight
W (x) are simultaneously either Hermitian positive or negative at every x ∈ [0, b], and the
blocks Vkk(x) are Hermitian. Then with λ ∈ R one has

∑

x∈(0,b)

nula Y (x, λ) = N0
a (λ) (6.13)

(here the sum is through all x ∈ (0, b) where nula Y (x, λ) 6= 0).

Corollary 9. With λ ∈ R one has

r∑

k=1

∑

x∈(0,b)

nulYkk(x, λ) = N0
a (λ).

Theorem 15 ([42]).
For the problem (6.1), (6.3), (6.4) with λ ∈ R one has

Na(λ)−
r∑

k=1

min {rankCkk,mk − æk(λ)} ≤
∑

x∈(0;b)

nula Y (x, λ) ≤ Na(λ).

6.2. The problem on half-line. Denote by L′ the minimal with respect to x = ∞
differential operator, generated in L2(Hm, (0,∞),W (x)dx) (here Hm is an m-dimensional
Hilbert space) by the differential expression lW [y] and the boundary condition at zero (6.3),
and by L′

k, k = 1, r, the symmetric operator, generated in L2(Hmk
, (0,∞),Wkk(x)dx) by

the differential expression lk,w[z] and the boundary condition (6.7). Assume that every
symmetric operator L′

k is lower semi-bounded. (If P (x) = Im, then the minimal symmetric
semi-bounded operators L′

k, k = 1, r, are essentially self-adjoint (see [9]), and their self-
adjoint extensions are derived by closing the domain of minimal operator).
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Suppose that for the symmetric operator L′
k one has a self-adjoint boundary condition

at infinity

Uk[yk] = 0, k = 1, r, (6.14)

where Uk is a linear map from L2(Hmk
, (0,∞),Wkk(x)dx) toHmk

such that Uk[yk] = Uk[zk]
if yk(x) = zk(x) for x big enough.

Suppose that for L′ one has some boundary condition at infinity

U [y] = 0 (6.15)

such that

(U [y])1 = U1[y1, y2, . . . , yr]

(U [y])2 = U2[y2, y3, . . . , yr]

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(U [y])r−1 = Ur−1[yr−1, yr]

(U [y])r = Ur[yr].

Denote by L an extension of the operator L′ determined by the boundary condition
(6.15) and such that it satisfies the conditions

U1[y1, 0, . . . , 0] = U1[y1]

U2[y2, 0, . . . , 0] = U2[y2] (6.16)

Ur−1[yr−1, 0] = Ur−1[yr−1].

If the conditions (6.14) determine the Friedrichs extension L0
k of the semi-bounded

symmetric operator L′
k, then the corresponding extension of the operator L′ is denoted by

L0. It is demonstrated in [74], [75] that the spectral function ρ(λ) of L0
k is produced by

passage to a limit as b → ∞ from the spectral function ρb(λ) of the problem (6.6), (6.7),
(6.10) on [0, b].

Denote by σk =
⋃
s
{λsk}s, k = 1, r, the set of eigenvalues λsk < λe(Lk) with fixed k of

the self-adjoint operator Lk, and by Nk(λ) the number of eigenvalues λsk < λ < λe(Lk)
counting their multiplicities. The quantities λsk, Nk(λ) for the operator L0

k are denoted
by λ0

sk, N
0
k (λ), respectively.

Lemma 2 ([43]).
The discrete spectrum of L is real and is contained in the union of discrete spectra of Lk,
i.e.,

σd(L) ⊆
r⋃

k=1

σk. (6.17)
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It was noted above that with b < ∞, the smoothness of coefficients implies Lemma 1,
i.e., (6.11) holds. However, this condition can fail for the problem on half-line. Sufficient
conditions that provide the coincidence of the spectrum σd(L) of L with the union of the
discrete spectra of Lk, k = 1, r, is presented in [13]. In that work, the validity of (6.11) is
proved for the differential equation of the form

−y′′ + V (x)y = λy, (6.18)

with triangular matrix m×m potential V (x), which has a bounded first moment, i.e.,

∞∫

0

x · |V (x)|dx < ∞.

Another sufficient condition for the equation (6.18), whose potential grows on its di-
agonal, has been established by the authors and is presented in [43].

Consider the equation with a block-triangular matrix potential

l [y] = −y′′ + V (x)y = λy, 0 ≤ x < ∞, (6.19)

where

V (x) = w(x) · Im + U(x), U(x) =




U11(x) U12(x) . . . U1r(x)
0 U22(x) . . . U2r(x)
. . . . . . . . . . . .
0 0 . . . Urr(x)


 , (6.20)

w(x) is a real scalar function, 0 < w(x) → ∞ monotonically as x → ∞, and has a
monotonic absolutely continuous derivative. The diagonal blocks Ukk(x), k = 1, r, are
Hermitian mk × mk matrices, mk ≥ 1 (in particular, with mk = 1 these are real scalar

functions). Let
r∑

k=1

mk = m, and Im being the identity m×m matrix.

In the case when
w(x) ≥ Cx2α, C > 0, α > 1, (6.21)

we assume that the coefficients of equation (6.19) satisfy the conditions

∞∫

a

|U(t)| · w− 1

2 (t)dt < ∞, (6.22)

∞∫

a

w′2(t) · w− 5

2 (t)dt < ∞,

∞∫

a

w′′(t) · w− 3

2 (t)dt < ∞ a > 0. (6.23)

(A studying the spectral properties of the one dimensional Schrödinger operator with
a polynomial potential is the subject of [17]).
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In the case when w(x) = x2α, 0 < α ≤ 1, let us assume that the coefficients of equation
(6.19) satisfy the condition

∞∫

a

|U(t)| · t−αdt < ∞, a > 0. (6.24)

The following Theorem has been proved in [43].

Theorem 16 ([43]). ¶

Consider the equation (6.19). If either conditions (6.21), (6.22), (6.23) with α > 1 or
the condition (6.24) with 0 < α ≤ 1 are satisfied, then the spectrum of L is discrete, real
and coincides with the union of spectra of the self-adjoint operators Lk, k = 1, r, i.e.,

σ(L) =
r⋃

k=1

σ(Lk).

Condition 2. In what follows we assume that the coefficients of the differential
equation (6.19) for the problem on half-line are such that the discrete spectrum of L
coincides with the union of discrete spectra of the self-adjoint operators Lk, k = 1, r, i.e.,
that (6.11) holds.

Let us enumerate the eigenvalues of L0 in the increasing order

λ0
1 ≤ λ0

2 ≤ . . . ≤ λ0
n ≤ . . . < λe(L

0).

Denote by N0
a (λ) the number of eigenvalues λ0

n < λ < λe(L
0) of L0, counting their

algebraic multiplicities.

Theorem 17 ([42]).
Assume that the Condition 2 is satisfied. Suppose that the operator L0 is generated by
the differential expression lW [y] with matrix block-triangular coefficients, the boundary
condition at zero (6.3), and such boundary conditions at infinity, that for semi-bounded
symmetric operators L′

k one gets this way the Friedrichs extensions. Suppose that the
diagonal blocks Pkk(x) of the coefficient at the highest derivative P (x) and the diagonal
blocks Wkk(x) of the weight W (x) are either both Hermitian positive or both negative at
every x ∈ [0;∞), and the blocks Vkk(x) are Hermitian. Then with λ < λe(L

0) one has

∑

x∈(0,∞)

nula Y (x, λ) = N0
a (λ).

(here the sum is taken over all x ∈ (0,∞) where nula Y (x, λ) 6= 0).

Let Lk be an arbitrary self-adjoint extension of the semi-bounded symmetric opera-
tor L′

k in L2(Hmk
, (0,∞),Wkk(x)dx), determined by the condition at infinity (6.14). A

description of self-adjoint extensions for symmetric differential operators of an arbitrary

¶Lemma 3 in [42] is a special case of this Theorem. It was promised in [42] to present a proof in a
subsequent paper, and this has been done in [43].
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order (both even and odd) with operator coefficients on an infinite interval (axis, half-
line) in the absolutely indefinite case is obtained in [39] (see also [85], [89]). In the case of
intermediate indices, these problems have been investigated in [15], [32], [56], [62], [64].

Denote by L the extension of the operator L′ by the boundary condition at infinity
(6.15), with the conditions (6.16) being satisfied.

Theorem 18 ([42]).
Suppose the Condition 2 is satisfied. With λ < λe(L) one has for the operator L

Na(λ)−
r∑

k=1

pk ≤
∑

x∈(0,∞)

nula Y (x, λ) = N0
a (λ) ≤ Na(λ),

where pk = Def
{
Lk

∣∣D
(
L0
k

)
∩D (Lk)

}
. If λ is not an eigenvalue of L′, then with λ <

λe(L) one has

Na(λ)−
r∑

k=1

min {pk, dk − æk(λ)} ≤
∑

x∈(0,∞)

nula Y (x, λ) = N0
a (λ) ≤ Na(λ),

dk = Def L′
k, æk(λ) the multiplicity of λ as an eigenvalue of the self-adjoint operator Lk.

Remark 6. With a regular endpoint b < ∞, one has

pk = rankCkk, dk = mk.

7. The Green Function, Resolvent, Parseval Equality for a Differential

Operator with Block-Triangular Matrix Coefficients

Consider the equation (6.19) with a block-triangular matrix potential. With α > 1 and
under the conditions (6.21), (6.22), (6.23), we define the functions γ0(x, λ) and γ∞(x, λ)
by setting

γ0(x, λ) =
1

4
√

4w(x)
· exp


−

x∫

0

√
w(u)du


 ,

γ∞(x, λ) =
1

4
√

4w(x)
· exp




x∫

0

√
w(u)du


 ,

and with 0 < α ≤ 1, w(x) = x2α by

γ0(x, λ) =
1

4
√

4 (x2α − λ)
· exp


−

x∫

a

√
u2α − λdu


 ,
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γ∞(x, λ) =
1

4
√

4 (x2α − λ)
· exp




x∫

a

√
u2α − λdu


 .

The asymptotics of these functions as x → ∞ has been established in [43].

Theorem 19 ([43]). With α > 1 and under the conditions (6.21), (6.22), (6.23), as well
as with 0 < α ≤ 1 under the condition (6.24), the equation (6.19) has a unique decreasing
at infinity matrix solution Φ(x, λ), which satisfies the condition

lim
x→∞

Φ(x, λ)

γ0(x, λ)
= Im

and is such that

lim
x→∞

Φ′(x, λ)

γ′0(x, λ)
= Im,

and also a unique increasing at infinity matrix solution Ψ(x, λ) which satisfies the condition

lim
x→∞

Ψ(x, λ)

γ∞(x, λ)
= Im,

and is such that

lim
x→∞

Ψ′(x, λ)

γ′∞(x, λ)
= Im.

The asymptotics of Φ(x, λ) and Ψ(x, λ) were used in [43] to prove Theorem 16 formu-
lated above.

Suppose we are given a boundary condition at x = 0

B · y′(0)− C · y(0) = 0, (7.1)

where B and C are commuting block-triangular matrices of the same structure as coeffi-
cients of the differential equation, subject to the condition

det
(
B2 + C2

)
=

r∏

k=1

det
(
B2

kk + C2
kk

)
6= 0.

Lemma 3 ([43]). The boundary condition (7.1) can be written down in the equivalent
form

cosA · y′(0)− sinA · y(0) = 0, (7.2)

where A is a block-triangular matrix of the same structure as B and C.

Along with the problem (6.19), (7.2), let us consider the split system

lk [yk] = −y′′k + (w(x)Imk
+ Ukk(x)) yk = λyk, k = 1, r, (7.3)
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with the boundary conditions

cosAkk · y′k(0)− sinAkk · yk(0) = 0, k = 1, r. (7.4)

Denote by L0 the minimal differential operator generated by the differential expression
l [y] (6.19) and the boundary condition (7.2). Also, denote by Lk, k = 1, r, the minimal
symmetric operators in L2 (Hmk

, (0,∞)), generated by the differential expressions lk [yk]
(7.3) and the boundary conditions (7.4). In view of the assumptions on coefficients for
each symmetric operator Lk, k = 1, r, we encounter the case of limit point at infinity. It
follows that the self-adjoint extensions L̃k of those operators are given by closures of Lk.
The operators L̃k are semi-bounded, and their spectra are discrete.

Denote by L the extension of the operator L0 determined by requiring that the func-
tions of the domain of L are in L2 (Hmk

, (0,∞)). Enumerate the eigenvalues of L in the
increasing order, counting their multiplicities:

λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . .

Together with the equation (6.19), we consider the left equation

l̃ [ỹ] = −ỹ′′ + ỹV (x) = λỹ, ỹ = (ỹ1 ỹ2 . . . ỹr) . (7.5)

Let us denote by Φ̃(x, λ) (respectively, Ψ̃(x, λ)) the increasing (respectively, the de-
creasing) at infinity solution of (7.5).

Denote by Y (x, λ) and Ỹ (x, λ) the solutions of (6.19) and (7.5), respectively, which
satisfy the initial conditions

Y (0, λ) = cosA, Y ′(0, λ) = sinA, Ỹ (0, λ) = cosA, Ỹ ′(0, λ) = sinA, λ ∈ C.

Set

G(x, t, λ) =




Y (x, λ)

(
W
(
Φ̃, Y

))−1
Φ̃(t, λ), 0 ≤ x ≤ t

−Φ(x, λ)
(
W
(
Ỹ ,Φ

))−1
Ỹ (t, λ), x ≥ t

. (7.6)

Theorem 20 ([44]). The matrix function G(x, t, λ) is the Green function of the differential
operator L, i.e.,

1. The function is continuous at all x, t ∈ [0,∞).

2. At every fixed t, the function G(x, t, λ) has a continuous derivative in x on each of
the intervals [0, t) and (t,∞); also at x = t it has a jump

G′
x(x+ 0, x, λ) −G′

x(x− 0, x, λ) = −Im.

3. With t fixed, the function G(x, t, λ) of the variable x is a matrix solution of (6.19)
on each of the intervals [0, t) and (t,∞); it satisfies the boundary condition (7.2).
Also, with x fixed, the function G(x, t, λ) of the variable t is a matrix solution of
(7.5) on each of the intervals [0, x) and (x,∞); it satisfies the boundary condition
ỹ′(0) · cosA− ỹ(0) · sinA = 0.
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In view of its definition (7.6), the function G(x, t, λ) is meromorphic in λ, whose poles
are just eigenvalues of L.

Consider the operator Rλ in L2 (Hm, (0,∞)) given by

(
Rλf

)
(x) =

∞∫

0

G(x, t, λ)f (t)dt =

= −
x∫

0

Φ(x, λ)
(
W
(
Ỹ ,Φ

))−1
Ỹ (t, λ)f(t)dt+

∞∫

x

Y (x, λ)
(
W
(
Φ̃, Y

))−1
Φ̃(t, λ)f(t)dt.

Theorem 21 ([44]). Rλ is a resolvent of the operator L.

As above, denote by Y (x, λ) the matrix solution of (6.19), which satisfies the initial
conditions Y (0, λ) = cosA, Y ′(0, λ) = sinA, and by Z(x, λ) the matrix solution of (6.19),
which satisfies the initial conditions Z(0, λ) = − sinA, Z ′(0, λ) = cosA. Then the solutions
Φ(x, λ), Φ̃(x, λ) admit representations in the form

Φ(x, λ) = Z(x, λ)W
{
Ỹ ,Φ

}
− Y (x, λ)W

{
Z̃,Φ

}
,

Φ̃(x, λ) = W
{
Φ̃, Z

}
Ỹ (x, λ)−W

{
Φ̃, Y

}
Z̃(x, λ).

Now the Green function (7.6) can be rewritten in the form

G(x, t, λ) = Y (x, λ)
(
W
{
Φ̃, Y

})−1
W
{
Φ̃, Z

}
Ỹ (t, λ) + . . . =

= Y (x, λ)W
{
Z̃,Φ

}(
W
{
Ỹ ,Φ

})−1
Ỹ (t, λ) + . . .

The ellipsis here stands for an entire function of λ. Consider a circle on the complex plane
bounded by a circumference CRn with radius Rn, centered at the origin and such that for

n big enough one has |λn| < Rn and λn+1 > Rn. Integrate the function
G(x, t, λ)

λ− z
along

the above contour to get

1

2πi

∫

CRn

G(x, t, λ)

λ− z
dλ =

= G(x, t, z) +
n∑

j=1

Re sλj

{
1

λ− z
Y (x, λ)W

{
Z̃,Φ

}(
W
{
Ỹ ,Φ

})−1
Ỹ (t, λ)

}
.

Sending n to the infinity, one obtains

G(x, t, z) = −
∞∑

j=1

Re sλj

{
1

λ− z
Y (x, λ)W

{
Z̃,Φ

}(
W
{
Ỹ ,Φ

})−1
Ỹ (t, λ)

}
.
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Similarly to [2], [13], [12], we define the normalizing polynomials by either

Nj(t) = e−λjtRe sλj

{
eλt
(
W
{
Ỹ ,Φ

})−1
W
{
Ỹ ,Ψ

}}

or

Nj(t) =

rj−1∑

k=0




rj−(k+1)∑

l=0

Re sλj

{(
W
{
Ỹ ,Φ

})−1
(λ− λj)

l+k

}
1

l!

dl

dλl
W
{
Ỹ ,Ψ

}∣∣∣∣
λ=λj


 tk

k!
.

Lemma 4 ([44]). ‖ For all k = 0, 1, . . . , rj − 1 one has

rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

dl

dλl
W
{
Φ̃, Z

}∣∣∣∣
λ=λj

= Re sλj

{(
W
{
Ỹ ,Φ

})−1
(λ− λj)

k

}
,

(7.7)
rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

dl

dλl
W
{
Φ̃, Y

}∣∣∣∣
λ=λj

= 0, (7.8)

rj−(k+1)∑

l=0

1

l!

dl

dλl
W
{
Ỹ ,Φ

}∣∣∣∣
λ=λj

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

= 0. (7.9)

Theorem 22 ([44]). Let L0 be the minimal differential operator generated by the differ-
ential expression (6.19), whose coefficients are subject either to (6.21), (6.22), (6.23) with
α > 1, or to (6.24) with 0 < α ≤ 1, and the boundary condition (7.2). Let L be the exten-
sion of L0 given by requiring that the functions in the domain of L are in L2 (Hm, (0,∞)).
Then the Green function of L has the form

G(x, t, z) =

=

∞∑

j=1

rj−1∑

k=0

1

k!

dk

dλk

(
1

λ− z
Φ(x, λ)

)∣∣∣∣∣∣
λ=λj

rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

dl

dλl

(
Φ̃(t, λ)

)∣∣∣∣
λ=λj

.

(7.10)

If all the eigenvalues λj of L are simple, i.e., the poles λj of the matrix
(
W
{
Ỹ ,Φ

})−1

are simple, then the matrix Nj(t) is given by

Nj = Re sλj

{(
W
{
Ỹ ,Φ

})−1
}

W
{
Ỹ ,Ψ

}∣∣∣
λ=λj

.

In this case one has

Re sλj

{(
W
{
Ỹ ,Φ

})−1
}

= Nj W
{
Φ̃, Z

}∣∣∣
λ=λj

,

‖Our formulas (7.8), (7.9) are similar to (25) of [13], but are supplied here with a different proof.
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Therefore, under the assumption that all the eigenvalues of L are simple, the formula
(7.10) becomes less cumbersome:

G(x, t, z) = −
∞∑

j=1

1

λj − z
Y (x, λj) W

{
Z̃,Φ

}∣∣∣
λ=λj

Nj W
{
Φ̃, Z

}∣∣∣
λ=λj

Ỹ (t, λj) =

=

∞∑

j=1

1

λj − z
Φ (x, λj)NjΦ̃ (t, λj) .

This formula is equivalent to (57) of [12], where the formula for the Green function is
obtained in the case of potential decreasing at infinity, which has a bounded first moment.

Let U(x), V (x) be arbitrary matrix functions from L2 (Hm, (0,∞)). Set

E(U, λ) =

∞∫

0

U(t)Φ(t, λ)dt, Ẽ(U, λ) =

∞∫

0

Φ̃(t, λ)U(t)dt.

Theorem 23 ([44]). Suppose that the coefficients of the problem (6.19), (7.2) are subject
either to (6.21), (6.22), (6.23) with α > 1, or to (6.24) with 0 < α ≤ 1. Then the arbi-
trary matrix functions U(x), V (x) ∈ L2 (Hm, (0,∞)) admit an expansion in the solutions
Φ (x, λ), Φ̃(x, λ) of equations (6.19), (7.5), respectively:

U(x) =

∞∑

j=1

rj−1∑

k=0

1

k!

dk

dλk
(E(U, λ))

∣∣∣∣
λ=λj

rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

dl

dλl

(
Φ̃(x, λ)

)∣∣∣∣
λ=λj

,

U(x) =

∞∑

j=1

rj−1∑

k=0

1

k!

dk

dλk
(Φ(x, λ))

∣∣∣∣
λ=λj

rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

dl

dλl

(
Ẽ(U, λ)

)∣∣∣∣
λ=λj

.

Also, the Parseval equation is valid:

∞∫

0

U(x)V (x)dx =

∞∑

j=1

rj−1∑

k=0

1

k!

dk

dλk
E(U, λ)|λ=λj

rj−(k+1)∑

l=0

1

l!

dk+l

dtk+l
Nj(t)

∣∣∣∣
t=0

dl

dλl
Ẽ(V, λ)

∣∣∣∣
λ=λj

.
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