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Discrete Singular Operators and Equations in a Half-

Space

A.V. Vasilyev, V.B. Vasilyev∗

Abstract. Discrete multidimensional singular integral equations with Calderon-Zygmund kernels
are considered in a discrete half-space. The solvability of such equations is studied using the prop-
erties of discrete Fourier transform and corresponding properties of Calderon-Zygmund operators.
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1. Introduction

We consider discrete operator generated by Calderon-Zygmund kernel K(x), which
is defined for discrete argument function uh(x̃), x̃ ∈ Zm

h , where Zm
h is an integer lattice

(modulo h) in Rm. We also consider the corresponding equation

auh(x̃) +
∑

ỹ∈Zm
h,+

K(x̃− ỹ)uh(ỹ)h
m = vh(x̃), x̃ ∈ Zm

h,+, (1)

in discrete half-space Zm
h,+ = {x̃ ∈ Zm

h : x̃m > 0} , uh, vh ∈ L2(Z
m
h,+) ≡ l2h.

By definition, we let K(0) = 0, and define the symbol of operator

uh(x̃) 7→ au(x̃) +
∑

ỹ∈Zm
h

K(x̃− ỹ)uh(ỹ)h
m, x̃ ∈ Zm

h ,

as a periodic function

σh(ξ) = a+
∑

x̃∈Zm
h

e−iξx̃K(x̃)hm, (2)

with period [−πh−1; πh−1]m.
The sum in (2) is defined as a limit of partial sums over cubes QN

lim
N→∞

∑

x̃∈QN

e−iξx̃K(x̃)hm,
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QN =

{

x̃ ∈ Zm
h : |x̃| ≤ N, |x̃| = max

1≤k≤m
|x̃k|

}

.

This reminds us of the symbol of classical Calderon-Zygmund operator [7] defined as
a Fourier transform of kernel K(x) in the sense of principal value

σ(ξ) = lim
N→∞

ε→0

∫

ε<|x|<N

K(x)eiξxdx.

It has been shown by earlier studies [9] that the images of σ(ξ) and σh(ξ) coincide
with each other, and this makes it possible to treat such equations in more detail in a
half-space.

2. Background

The continual analog of equation (1) is the equation

au(x) +

∫

Rm
+

K(x− y)u(y)dy = v(x), x ∈ Rm
+ , (3)

in the space L2(R
m
+ ).

This is a well-studied equation [5]. Using the Fourier transform, it can be reduced to
the classical Riemann boundary value problem for upper and lower half-planes [1] with the
coefficient σ(ξ′, ξm), where ξ is a dual (in the Fourier sense) variable and ξ′ = (ξ1, ..., ξm−1)
is a parameter.

For discrete convolution in a half-axis, one of the authors of this paper showed [8]
that such equation is equivalent to certain Riemann boundary value problem in a strip.
It is easy to verify that for discrete half-space we have the similar problem in a strip
for which the coefficients are defined by symbol σh(ξ

′, ξm), and ξ′ is a parameter. For
continual equation we have the Riemann boundary value problem with parameter ξ′ and
a coefficient defined by σ(ξ′, ξm). The unique solution of this problem is determined by
topological index with respect to the variable ξm.

The topological index of such problem is determined, roughly speaking, by the variation
of the argument of function σ(·, ξm), as the argument ξm varies from −∞ to +∞ and does
not depend on ξ′(m ≥ 3). The same is true for the discrete equation (1), and its solvability
is determined by the variation of argument σ(·, ξm), as the variable ξm varies in the interval
[−πh−1, πh−1].

The key moment is to get the following relation:

lim
h→0

πh−1
∫

−πh−1

d arg σh(·, t) =

+∞
∫

−∞

d arg σ(·, t). (4)

The validity of (4) implies the solvability (or unsolvability) of equations (1) and (3). Based
on the results of [2], we can assert that the relation (4) is satisfied at least for continuous
symbol σ(ξ) on sphere Sm−1, if σ(0;+1) = σ(0;−1).
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3. Discrete Convolutions on a Half-Axis

A convolution of two functions f and g on a straight line is defined by the integral

(f ? g)(x) =

+∞
∫

−∞

f(x− y)g(y)dy,

which exists if f, g ∈ L2(R). This is a continual convolution. Discrete convolution is
defined in the same way. If f and g are functions of discrete argument, i.e. if they are
sequences, then

(f ? g)(n) ≡
∑

k∈Z

f(n− k)g(k) ≡
∑

k∈Z

fn−kgk, (5)

fk ≡ fk, g(k) ≡ gk, k ∈ Z,

which exists for f, g ∈ l2.

The Fourier transform of discrete function is defined by the following formula:

(Ff)(ξ) ≡ f̃(ξ) =
∑

k∈Z

fke
−ikξ, ξ ∈ [−π, π].

Applying the Fourier transform to (5), we come to the standard formula

F (f ? g) = f̃ · g̃,

which immediately provides a solvability condition for discrete convolution equation

au(n) +
∑

k∈Z

M(n− k)u(k) = v(n), (6)

where a is a constant, M and v are the given discrete functions, and u is a sought function.

Function a+ M̃(ξ), ξ ∈ [−π, π], is called a symbol of the equation (6).

Thus, the equation (6) has a unique solution if its symbol never vanishes, M,v ∈ l2.

The situation gets much more complicated if we suppose that the equation (6) is defined
not on the whole space Z, , but only on Z+ = {0, 1, 2, ...}, i.e.

au(n) +
∑

k∈Z+

M(n − k)u(k) = v(n), n ∈ Z+, (7)

where discrete function M is defined on the whole Z, while the given v (and the sought
u) are only defined on Z+.

Consider two projectors:

(P+u)(n) =

{

u(n), n ≥ 0
0, n < 0,

(P−u)(n) =

{

0, n ≥ 0
u(n), n < 0,
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and discrete convolution operator M : u(n) 7−→ au(n) +
∑

k∈Z+

M(n − k)u(k). Then the

equation (7) can be rewritten as follows:

P+Mu+ = f+, (8)

where functions u+(the sought one) and f+ (the given one) are defined on Z+. It is clear
that the equation (8) is equivalent (from the viewpoint of solvability) to so called paired
equation

(M1P+ +M2P−)U = F, (9)

on the whole lattice Z, M2 = I.
The use of discrete Fourier transform leads us to the summation of divergent series

∑

k∈Z+

e−ikξ. (10)

To get rid of divergence, we add a multiplier eis and then pass to the limit as s → 0. As
a result, we obtain operator P+ in terms of Fourier images.

So,
∑

k∈Z+

e−ikξeiks =
∑

k∈Z+

e−ik(ξ+is) =
∑

k∈Z+

e−ikζ , ζ = ξ + is.

The obtained series is convergent and its sum is equal to
∑

k∈Z+

e−ikζ = 1/2− i/2 cot(ζ/2).

Thus,

(FP+u) = 1/2ũ(ξ)− i/2 lim
s→0+

π
∫

−π

cot
ζ − τ

2
ũ(τ)dτ.

Note that we would come to the similar integral (in the sense of principal value) if we
summed the series (10) in a usual way (using Dirichlet kernel and passage to the limit in
partial sums [4]). That would lead us to the periodical version of Hilbert transform

(Hu)(x) = v.p.

π
∫

−π

cot
x− t

2
u(t)dt.

If projector P−, is considered, then the sum (9) becomes

= i/2 + i/2 cot(ζ/2),

and we get the following formula:

(FP−u) = −1/2ũ(ξ) + i/2 lim
s→0+

π
∫

−π

cot
ζ − τ

2
ũ(τ)dτ.
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4. Periodic Riemann Boundary Value Problem

Consider the function

Φ(ζ) =
1

4πi

π
∫

−π

cot
ζ − t

2
φ(t)dt,

and suppose that φ(t) satisfies Hölder condition on [−π, π]:

|φ(t1)− φ(t2)| ≤ c|t1 − t2|
α,

∀t1, t2 ∈ [−π, π], 0 < α ≤ 1, φ(−π) = φ(π).
Boundary values (s → ±0) can be calculated by passing from [−π, π] to the unit

circumference and applying classical Sokhotskii-Plemelj formulas. As a result, we get

Theorem 1. The formulas

Φ±(ξ) = ±
φ(t)

2
+

1

2πi
v.p.

π
∫

−π

cot
ξ − t

2
φ(t)dt, (11)

are true, where Φ±(ξ) denote the boundary values Φ±(ζ) as s → ±0.

These formulas lead us to the following formulation of periodic Riemann boundary
value problem: find the pair of functions Φ±(z), analytic in half-strips

Π± = {z ∈ C : z = t+ is, t ∈ [−π, π], ± s > 0},

for which their boundary values satisfy linear relation

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ [−π, π],

as s → 0±, where G(t) and g(t) are the given functions on [−π, π].
If we suppose that G(t) ∈ C[−π, π], G(−π) = G(π), then the index of function G on

the interval [−π, π] is defined as the variation of argG(t) divided by 2π as t varies from
−π to π. This is an integer denoted by æ .

Theorem 2. If G(t) satisfies Hölder condition, æ=0, then the periodic Riemann boundary
value problem has a unique solution Φ±(t) ∈ L2[−π, π], which is constructed using function
Φ(ζ).

5. Equations in Continual Case and the Classical Riemann Boundary

Value Problem

5.1. Half-Axis Case

Reduction of equation (9) to so called characteristic singular integral equation is real-
ized with the help of special Hilbert transform [1], [2], [6]
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(Hu)(x) ≡
1

πi
v.p.

+∞
∫

−∞

u(s)

s− x
ds

≡
1

πi
lim

N→+∞

ε→0+

(

x−ε
∫

−N

+

N
∫

x+ε

)
u(s)

s− x
ds.

The properties of this operator are well-studied. In particular, operator H : L2(R) →
L2(R) is a bounded linear operator with its spectrum consisting of two points ±1, and
H2 = I.

Besides, the following two operators

P = 1/2(I +H), Q = 1/2(I −H),

are the projectors on the subspaceA(R) ⊂ L2(R) of functions admitting analytic extension
to the upper complex half-plane C+ and on the subspace B(R) ⊂ L2(R) of functions
admitting analytic extension to the lower complex half-plane C−, respectively. So

A(R)⊕B(R) = L2(R).

The following identities are true:

P 2 = P, Q = I − P, Q2 = Q, PQ = QP = 0.

If we denote by P+, and P− the operators of restriction to the positive and negative
half axes, respectively, then it is easy to verify [2] that

FP+ = QF, FP− = PF. (12)

Next, by applying Fourier transform to one-dimensional equation (9) we get

1

2
σM1

(ξ)(I −H)Ũ(ξ) +
1

2
σM2

(ξ)(I +H)Ũ(ξ) = F̃ (ξ),

where σM1
, σM2

are the symbols of operators M1,M2. By grouping terms, we can rewrite
the last equation as follows:

σM1
(ξ) + σM2

(ξ)

2
Ũ(ξ)+

+
σM1

(ξ) + σM2
(ξ)

2πi
v.p.

+∞
∫

−∞

Ũ(η)

η − ξ
dη = F̃ (ξ). (13)

Equation (13) is well-known in the theory of singular integral equations [1]. It is called
a characteristic singular integral equation, and its solution is closely related to the classical
Riemann boundary value problem for upper and lower half-planes C±. This problem is
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formulated as follows: finding two functions Φ±(t), defined on R, which admit analytic
extension to C± and satisfy the linear relation

Φ+(t) = G(t)Φ−(t) + g(t), (14)

on straight line R, where G(t) and g(t) are the given functions on R. If we denote

a(t) =
σM1

(t) + σM2
(t)

2
, b(t) =

σM1
(t)− σM2

(t)

2
,

then we will see that the equation (13) in space L2(R) and the problem (14) for Φ± ∈
L2(R) are equivalent [1], i.e. coefficient G(t) and the right hand side g(t) are easily
calculated by a and b:

G(t) =
a(t) + b(t)

a(t)− b(t)
, g(t) =

F̃ (t)

a(t)− b(t)
,

and, vice versa, problem (14) corresponds to the characteristic singular integral equation
(13). It is also known [1] that the solvability conditions of equation (13) are determined
by certain topological invariants called indices. Note that in our case

G(t) = σM1
(t)σ−1

M2
(t). (15)

We assume that the following condition is satisfied for (15). Denote by R the one-point
compactification of R and suppose that G(t) is continuous on R and vanishes nowhere.
The variation of argument of G(t) divided by 2π, as t varies from −∞ to +∞, is called
the index æ of this function. If æ = 0, then the solution of equation (13) is unique and
can be written out explicitly using Hilbert transform [1].

5.2. Half-Space Case

Back to equation (9), where M1, and M2 are Calderon-Zygmund operators (as in
equation (3)) and by P+, P− we mean the operators of restriction to the half-space Rm

± =
{x = (x1, ..., xm), ± xm > 0}.

It is evident that, slightly complemented, the previous reasoning stays true. If we
denote by F the Fourier transform (as we did before), then we have the following relations:

FP+ = Qξ′F, FP− = Pξ′F,

P = 1/2(I +Hξ′), Q = 1/2(I −Hξ′).

Here Hξ′ is a Hilbert transform in variables ξm, ξ′ = (ξ1, ..., ξm−1):

(Hξ′u)(ξ
′, ξm) ≡

1

πi
v.p.

+∞
∫

−∞

u(ξ′, τ)

τ − ξm
dτ.
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In such case, the equation (13) turns to the following one with the parameter ξ′:

σM1
(ξ′, ξm) + σM2

(ξ′, ξm)

2
Ũ(ξ)+

+
σM1

(ξ′, ξm) + σM2
(ξ′, ξm)

2πi
v.p.

+∞
∫

−∞

Ũ(ξ′, η)

η − ξm
dη = F̃ (ξ). (16)

This equation corresponds to the Riemann boundary value problem (with parameter ξ′)
with coefficient

G(ξ′, ξm) = σM1
(ξ′, ξm)σ−1

M2
(ξ′, ξm). (17)

To ensure the unique solvability of equation (16), the index of G(ξ′, ξm) with respect to
variable ξm needs to be equal to 0.

The symbol of Calderon-Zygmund operator has a very specific nature. It is a homoge-
neous function of degree 0, i.e. it is in fact defined on the unit sphere Sm−1. Let m ≥ 3.
Take ξ′ ∈ Sm−2 and suppose that G(0,−1) = G(0,+1). As ξm varies between −∞ to +∞,
the function G(ξ) will take values on the arc of large semi-circle joining the points (0,−1)
and (0,+1). At the same time, the symbol will take values alongside the closed curve in
the complex plane. These curves will be homotopic for different values of ξ′ , i.e. they will
have the same index æ with respect to 0. The condition æ = 0 provides the uniqueness of
the solution of equation (16).

6. Back To Discrete Case

We are back to discrete equations, assuming that P± in (9) are the operators of restric-
tion to Zm

h,±, and M1,M2 are discrete Calderon-Zygmund operators generated by kernels
M1(x), and M2(x), which are bounded in space L2(Z

m
h ).

Discrete Fourier transform for discrete argument functions defined on lattice Zm
h is

given by the formula

u(x̃) 7−→
1

(2π)m

∑

x̃∈Zm
h

u(x̃)e−ix̃·ξhm ≡ ũ(ξ), ξ ∈ [−h−1π, h−1π]m.

Such Fourier transform has the same properties as the classical one [3].
In accordance with Theorem 1 and Section 5, we define the periodical analog of Hilbert

transform with respect to the variable ξm (ξ ∈ [−π, π]m, ξ′ is fixed) by the formula

(Hper
ξ′ u)(ξm) =

1

2πi

πh−1
∫

−πh−1

u(t) cot
h(t− ξm)

2
dt. (18)

Periodical analogs of projectors (12) look as follows:

P per
ξ′ = 1/2(I +Hper

ξ′ ), Qper
ξ′ = 1/2(I −Hper

ξ′ ).
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And the periodical analog of equation (16) will be

σ1,h(ξ
′, ξm) + σ2,h(ξ

′, ξm)

2
Ũ(ξ)+

+
σ1,h(ξ

′, ξm) + σ2,h(ξ
′, ξm)

4πi
×

×v.p.

πh−1
∫

−πh−1

Ũ(ξ′, η) cot
h(η − ξm)

2
dη = F̃ (ξ), (19)

where σ1,h, σ2,h are the symbols (2) of discrete operators M1,M2. Of course, equation
(19) is related to the corresponding Riemann boundary value problem, and the unique
solvability condition for this problem is given in Theorem 2. In our case, this condition is

Ind σ1,h(·, ξm)σ−1
2,h(·, ξm) = 0.

7. Passage From Discrete Case To Continual One

First we recall that the images of symbols σ and σh coincide with each other [9].
Moreover, index is an integer-valued characteristic in both continual (if the transmission
condition σ(0,−1) = σ(0,+1) is satisfied) and discrete (periodical) cases. Analyzing
variations arg σh(·, ξm) alongside the arcs of large semi-circumferences on Sm−1 and taking
into account that

lim
h→0

σh(ξ) = σ(ξ), ∀ξ ∈ Sm−1,

we arrive at the conclusion that the following theorem is true:

Theorem 3. The equations (1) and (3) are either both solvable or both unsolvable.
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