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A Class of Small Deviation Theorems for Random Sums

of Multivariate Function of mth-Order Markov Chain
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Abstract. In this paper, the notion of limit relative logarithmic likelihood ratio of stochastic
sequence, as a measure of dissimilarity between the joint distribution and the mth-order nonho-
mogeneous Markov distribution, is introduced. A kind of strong limit theorems represented by
inequalities which we call the small deviation theorems for the arbitrary stochastic sequence are
obtained by constructing the consistent distribution functions. As corollaries, we obtain some
small deviation theorems for the occurrence frequency of the state groups and the harmonic mean
of the transitional probabilities of the mth-order nonhomogeneous Markov chain.
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1. Introduction

Let {Xn, n ≥ 0} be an arbitrary stochastic sequence defined on the probability space
(Ω,F , P ) which takes values in an alphabet set S = {s0, s1, · · · sN−1}, with the joint
distribution:

P (X0 = x0, · · · ,Xn = xn) = p(x0, · · · , xn) > 0, xi ∈ S, 0 ≤ i ≤ n. (1)

We obtain by the definition of the conditional probability

p(x0, · · · , xn) = p(x0)

n
∏

k=1

pk(xk|x0, · · · , xk−1). (2)

Let Q be another probability measure on (Ω,F), {Xn, n ≥ 0} be an mth-order nonho-
mogeneous Markov chain on the measure Q, with the m-dimensional initial distribution
and mth-order transition probabilities as follows:

qo(i0, · · · , im−1) = Q(X0 = i0, · · · ,Xm−1 = im−1), i0, · · · , im−1 ∈ S, (3)
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qn(j|i1, · · ·, im) = Qn(Xn = j|Xn−m = i1, · · ·,Xn−1 = im), i1, · · ·, im, j ∈ S, n ≥ m. (4)

The joint distribution of {Xn, n ≥ 0} with respect to the measure Q is

Q(X0 = x0, · · ·,Xn = xn) = q(x0, · · ·, xn) = qo(x0, · · ·, xm−1)
n
∏

k=m

qk(xk|xk−m, · · ·, xk−1),

xi ∈ S, 0 ≤ i ≤ n. (5)

Definition 1. Let p and q be defined as (1) and (5), {σn, n ≥ 0} be a nonnegative
increasing stochastic sequence and σn ↑ ∞. Denote

h(P |Q) = lim sup
n→∞

1

σn
ln[p(X0, · · ·,X[σn])

/

qo(X0, , · · ·,Xm−1)

[σn]
∏

k=m

qk(Xk|Xk−m, · · ·,Xk−1)],

(6)
where [σn] represents the integral part of σn. h(P |Q) is called the sample divergence rate
of the measure P relative to the measure Q.

In fact, h(P |Q) is also called the limit relative logarithmic likelihood ratio or asymptotic
logarithmic likelihood ratio of {Xn, n ≥ 0} on the measure P relative to Q. Although
h(P |Q) is not an optimum metric between the two probability measures, we nevertheless
think of it as a measure of ”dissimilarity” between their joint distribution and the mth-
order nonhomogeneous Markov distribution. Obviously, h(P |Q) = 0 if and only if P = Q.
It will be shown in (20) that h(P |Q) ≥ 0, a.s.(almostsurely) in any case. Hence, h(P |Q)
can be used as a random measure of the deviation between the true joint distribution
p(x0, · · · , xn), (n ≥ 0) and the mth-order nonhomogeneous Markov reference distribution
qo(x0, · · ·, xm−1)

∏n
k=m qk(xk|xk−m, · · ·, xk−1). Roughly speaking, this deviation may be

regarded as the one between {Xn, n ≥ 0} under the the measure P and the one under Q.
The smaller h(P |Q) is, the smaller the deviation is.

Study for strong limit properties of nonhomogeneous Markov chain is always one of
central parts of the limit theory of probability theory. Many scholars have studied the
subject until now. Liu and and Yang (see [1]) have studied the asymptotic equipartition
properties (AEP) and limit properties of function sequence of nonhomogeneous Markov
chain. Liu (see [2]) has discussed the strong limit theorems relative to the geometric
average of random transition properties of finite nonhomogeneous Markov chain. Liu
and Yang (see [3]) have investigated the strong deviation theorems of nonhomogeneous
Markov chain relative to arbitrary stochastic sequence and AEP approximation of nonho-
mogeneous Markov information source. Yang (see [4]) has furthermore studied a class of
small deviation theorems for the sequence of N -valued random variables with respect to
mth-order nonhomogeneous Markov chains. Liu (see [5]) has discussed the strong limit
theorems for the harmonic mean of random transition probabilities of nonhomogeneous
Markov chain. Liu and Wang (see [6]) have proved the strong limit properties for the state
couples of nonhomogeneous Markov chain on the random selection system. Wang (see [7])
has studied the AEP and limit theorems for nonhomogeneous Markov chain on the gener-
alized gambling system. Afterward, many scholars (see [11-28]) have studied all kinds of
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stochastic processes and some limit properties with their applications for nonhomogeneous
Markov chains on the generalized gambling system.

Many of practical information sources, such as language and image information, are
often mth-order Markov chain, and always nonhomogeneous. mth-order nonhomogeneous
Markov chain is a natural generalization of the general nonhomogeneous Markov chain.
Hence it is of importance to study the limit properties for the mth-order nonhomogeneous
Markov chain in the information theory and the probability theory. Yang and Liu (see
[9]) have proved the limit theorem for averages of the functions of m+1 variables of mth-
order nonhomogeneous Markov chain and the AEP formth-order nonhomogeneous Markov
information source. Wang (see [10]) has discussed the Shannon-McMillan theorems for
mth-order nonhomogeneous Markov information source.

In this paper, our aim is to establish a class of small deviation theorems represented
by inequalities for the dependent stochastic sequence with respect to mth-order nonho-
mogeneous Markov chain by introducing the sample relative entropy rate as a measure of
deviation between the arbitrary stochastic sequence and the mth-order nonhomogeneous
Markov chain. We apply a new type of techniques distinct from that of Liu and Yang
(see [4] and [9]) to study the small deviation theorems for arbitrary stochastic sequence.
As corollaries, a class of small deviation theorems for the occurrence frequencies of state
groups and some limit properties for harmonic mean of the transitional probabilities of
the mth-order Markov chain are obtained.

We denote Xn
m = {Xm, · · · ,Xn}, im0 = {i0, · · · , im}. xnm is the realization of Xn

m.

2. Main Result and Its Proof

Theorem 1. Let {Xn, n ≥ 0} be an arbitrary stochastic sequence with the joint distribu-
tion (1), h(P |Q) be defined by (6), {σn, n ≥ 0} be an increasing nonnegative stochastic
sequence. Let g(x0, · · · , xm) be a multivariate real function defined on Sm+1. Denote

D(c) = {ω : lim
n→∞

σn(ω) = +∞, h(P |Q) ≤ c}. (7)

Then

lim sup
n→∞

1

σn

[σn]
∑

k=m

{g(Xk
k−m)−EQ(g(X

k
k−m)|Xk−1

k−m)} ≤ (2
√
c+ c)

∑

i0···im∈S

|g(i0, · · · , im)|,

P − a.s. ω ∈ D(c) (8)

lim inf
n→∞

1

σn

[σn]
∑

k=m

{g(Xk
k−m)− EQ(g(X

k
k−m)|Xk−1

k−m)} ≥ −2
√
c

∑

i0···im∈S

|g(i0, · · · , im)|,

P − a.s. ω ∈ D(c) (9)
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where [σn] represents the integral part of σn, and EQ is the expectation with respect to the
measure Q.

Proof. We consider the probability space (Ω,F , P ). Let λ be an arbitrary real number,
and δi(j) be the Kronecker function. Denote

δi0···im(x
k
k−m) = δi0(xk−m) · · · δim(xk),

δi0···im−1
(xk−1

k−m) = δi0(xk−m) · · · δim−1
(xk−1),

Mk(xk−m, · · · xk;λ) =
(

1

1 + (λ− 1)qk(im|im−1
0 )

)δi0···im−1
(xk−1

k−m
)

λδi0···im (xk

k−m
)qk(xk|xk−1

k−m),

k ≥ m. (10)

We construct the following product distribution:

µ(x0, · · · , xn;λ) = qo(x0, · · · , xm−1)

n
∏

k=m

Mk(xk−m, · · · , xk;λ). (11)

By (10) and (11) we have

∑

xn∈S

µ(x0, · · · , xn;λ) =

=
∑

xn∈S

qo(x
m−1
0 )

n
∏

k=m

(

1

1 + (λ− 1)qk(im|im−1
0 )

)δi0···im−1
(xk−1

k−m
)

λδi0···im (xk

k−m
)qk(xk|xk−1

k−m)

= µ(x0, · · · , xn−1;λ)
∑

xn∈S

(

1

1 + (λ− 1)qn(im|im−1
0 )

)δi0···im−1
(xn−1

n−m
)

λδi0···im (xn
n−m

)qn(xn|xn−1
n−m)

= µ(x0, · · · , xn−1;λ)
1

[1 + (λ− 1)qn(im|im−1
0 )]δi0···im−1

(xn−1

n−m
)
(
∑

xn=im

+
∑

xn 6=im

)

= µ(x0, · · · , xn−1;λ)
λδi0···im−1

(xn−1

n−m
)qn(im|xn−1

n−m) + 1− qn(im|xn−1
n−m)

[1 + (λ− 1)qn(im|im−1
0 )]δi0···im−1

(xn−1

n−m
)

. (12)

When δi0···im−1
(xn−1

n−m) = 0, we obtain from (12) that

∑

xn∈S

µ(x0, · · · , xn;λ) =

= µ(x0, · · · , xn−1;λ)
qn(im|xn−1

n−m) + 1− qn(im|xn−1
n−m)

[1 + (λ− 1)qn(im|im−1
0 )]0

= µ(x0, · · · , xn−1;λ). (13)
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When δi0···im−1
(xn−1

n−m) = 1, we acquire from (12) that

∑

xn∈S

µ(x0, · · · , xn;λ)

= µ(x0, · · · , xn−1;λ)
1 + (λ− 1)qn(im|im−1

0 )

1 + (λ− 1)qn(im|im−1
0 )

= µ(x0, · · · , xn−1;λ). (14)

Therefore, µ(x0, · · · , xn;λ), n = 1, 2, · · · are a family of consistent distribution func-
tions on Sn+1. Denote

Tn(λ, ω) =
µ(X0, · · · ,Xn;λ)

p(X0, · · · ,Xn)
. (15)

By (5), (11) and (15), we can rewrite (15) as

Tn(λ, ω) = λ
∑

n

k=m
δi0···im (Xk

k−m
)

n
∏

k=m

[
1

1 + (λ− 1)qk(im|im−1
0 )

]δi0···im−1
(Xk−1

k−m
)

·qo(Xm−1
0 )

n
∏

k=m

qk(Xk|Xk−1
k−m)

/

p(X0, · · · ,Xn). (16)

Since µ and p are two probability measures, we can know that Tn(λ, ω) is a nonnegative
sup-martingale from Doob’s martingale convergence theorem (see [8]). Moreover,

lim
n→∞

Tn(λ, ω) = T∞(λ, ω) < ∞. P − a.s. (17)

By (7) and (17) we have

lim sup
n→∞

1

σn
lnT[σn](λ, ω) ≤ 0. P − a.s. ω ∈ D(c) (18)

By (16) and (18) we can obtain

lim sup
n→∞

1

σn







[σn]
∑

k=m

δi0···im(X
k
k−m) ln λ −

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m) ln[1 + (λ− 1)qk(im|im−1
0 )] =

− ln



p(X0, · · · ,X[σn])

/

qo(X
m−1
0 )

[σn]
∏

k=m

qk(Xk|Xk−1
k−m)











≤ 0.P − a.s. ω ∈ D(c) (19)

Letting λ = 1 in (19), by (6) we can know

h(P |Q) ≥ lim inf
n→∞

1

σn
ln

[

p(X0, · · · ,X[σn])

qo(X0, · · · ,Xm−1)
∏[σn]

k=m qk(Xk|Xk−1
k−m)

]

≥ 0. P−a.s. ω ∈ D(c)

(20)



68 Kangkang Wang, Decai Zong

By (6), (7) and (19), taking into account the property of superior limit, we can write

lim sup
n→∞

1

σn
{
[σn]
∑

k=m

δi0···im(X
k
k−m) lnλ−

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m) ln[1 + (λ− 1)qk(im|im−1
0 )]} ≤ h(P |Q) ≤ c.

P − a.s. ω ∈ D(c) . (21)

In the case λ > 1, dividing two sides of (21) by lnλ, we have

lim sup
n→∞

1

σn







[σn]
∑

k=m

δi0···im(X
k
k−m)−

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)
ln[1 + (λ− 1)qk(im|im−1

0 )]

lnλ







≤ c

lnλ
.

P − a.s. ω ∈ D(c) (22)

By (22), using the inequalities 1−1/x ≤ lnx ≤ x−1,(x > 0), 0 ≤ δi0,··· ,im−1
(Xk−1

k−m;ω) ≤
1 and the properties of superior limit

lim sup
n→∞

(an − bn) ≤ d ⇒ lim sup
n→∞

(an − cn) ≤ lim sup
n→∞

(bn − cn) + d,

we can write

lim sup
n→∞

1

σn

[σn]
∑

k=m

[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]

≤ lim sup
n→∞

1

σn

[σn]
∑

k=m

{δi0···im−1
(Xk−1

k−m)
ln[1 + (λ− 1)qk(im|im−1

0 )]

lnλ

− δi0···im−1
(Xk−1

k−m)qk(im|im−1
0 )}+ c

lnλ

≤ lim sup
n→∞

1

σn

[σn]
∑

k=m

{δi0···im−1
(Xk−1

k−m)[
(λ− 1)qk(im|im−1

0 )

lnλ
− qk(im|im−1

0 )]}+ c

lnλ

= lim sup
n→∞

1

σn

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)qk(im|im−1
0 )

(

λ− 1

lnλ
− 1

)

+
c

lnλ

≤ lim sup
n→∞

1

σn

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)qk(im|im−1
0 )

(

λ− 1

1− 1/λ
− 1

)

+
c

1− 1/λ

≤ lim sup
n→∞

1

σn

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)(λ− 1) + c+
c

λ− 1
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≤ lim sup
n→∞

1

σn

[σn]
∑

k=m

(λ− 1) + c+
c

λ− 1
= (λ− 1) + c+

c

λ− 1
.

P − a.s. ω ∈ D(c) (23)

It is easy to show that in the case c > 0 , the function f(λ) = (λ− 1)+ c+ c
λ−1(λ > 1)

attains its smallest value f(1 +
√
c) = 2

√
c+ c at λ = 1 +

√
c. Hence, letting λ = 1 +

√
c

in (23), we have

lim sup
n→∞

1

σn

[σn]
∑

k=m

[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )] ≤ 2
√
c+ c.

P − a.s. ω ∈ D(c) (24)

In the case c = 0, (24) also follows from (23) by choosing λi → 1 + (i → ∞).
In the case 0 < λ < 1, dividing two sides of (21) by lnλ, we obtain

lim inf
n→∞

1

σn

[σn]
∑

k=m

[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]

≥ lim inf
n→∞

1

σn

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)

(

ln[1 + (λ− 1)qk(im|im−1
0 )]

lnλ
− qk(im|im−1

0 )

)

+
c

lnλ

≥ lim inf
n→∞

1

σn

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)qk(im|im−1
0 )

(

λ− 1

1− 1/λ
− 1

)

+
c

λ− 1

≥ lim inf
n→∞

1

σn

[σn]
∑

k=m

δi0···im−1
(Xk−1

k−m)(λ− 1) +
c

λ− 1
≥ (λ− 1) +

c

λ− 1

P − a.s. ω ∈ D(c) . (25)

It is easy to show that in the case c > 0, the function h(λ) = (λ − 1) + c
λ−1(0 < λ < 1)

attains its largest value h(1−√
c) = −2

√
c at λ = 1−√

c . Hence, letting λ = 1−√
c in

(25), we obtain

lim inf
n→∞

1

σn

[σn]
∑

k=m

[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )] ≥ −2
√
c.

P − a.s. ω ∈ D(c) (26)

In the case c = 0, (26) also follows from (25) by choosing λi → 1− (i → ∞).
It follows from (24) and (26) that for any real function g(i0, · · · , im) ,

lim sup
n→∞

1

σn

[σn]
∑

k=m

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]
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≤ (2
√
c+ c)|g(i0, · · · , im)|, P − a.s. ω ∈ D(c) (27)

lim inf
n→∞

1

σn

[σn]
∑

k=m

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]

≥ −2
√
c|g(i0, · · · , im)|. P − a.s. ω ∈ D(c) (28)

Note that

g(Xk−m, · · · ,Xk)− EQ(g(Xk−m, · · · ,Xk)|Xk−m, · · · ,Xk−1)

= g(Xk−m, · · · ,Xk)−
∑

im∈S

g(Xk−m, · · ·Xk−1, im)qk(im|Xk−m, · · · ,Xk−1)

=
∑

i0···im∈S

δi0···im(Xk−m, · · · ,Xk)g(i0, · · · , im)

−
∑

i0···im∈S

δi0···im−1
(Xk−m, · · · ,Xk−1)g(i0, · · · , im)qk(im|i0, · · · , im−1)

=
∑

i0···im∈S

δi0···im−1
(Xk−m, · · · ,Xk−1)g(i0, · · · , im)[δim(Xk)− qk(im|i0, · · · , im−1)]

=
∑

i0···im∈S

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]. (29)

By virtue of the properties of superior limit and inferior limit, combing (27)-(29), we
obtain

lim sup
n→∞

1

σn

[σn]
∑

k=m

{g(Xk
k−m)− EQ(g(X

k
k−m)|Xk−1

k−m)}

= lim sup
n→∞

1

σn

[σn]
∑

k=m

∑

i0···im∈S

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]

≤
∑

i0···im∈S

lim sup
n→∞

1

σn

[σn]
∑

k=m

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]

≤ (2
√
c+ c)

∑

i0···im∈S

|g(i0, · · · , im)|, (30)

lim inf
n→∞

1

σn

[σn]
∑

k=m

{g(Xk
k−m)− EQ(g(X

k
k−m)|Xk−1

k−m)}

= lim inf
n→∞

1

σn

[σn]
∑

k=m

∑

i0···im∈S

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]
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≥
∑

i0···im∈S

lim inf
n→∞

1

σn

[σn]
∑

k=m

g(i0, · · · , im)[δi0···im(X
k
k−m)− δi0···im−1

(Xk−1
k−m)qk(im|im−1

0 )]

≥ −2
√
c

∑

i0···im∈S

|g(i0, · · · , im)|. (31)

(8), (9) follow from (30) and (31), respectively. The proof is finished. J

Corollary 1. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain with the
m dimensional initial distribution (3) and mth-order transitional probabilities (4). Let
g(x0, · · · , xm) be a multivariate real function defined on Sm+1. Then

lim
n→∞

1

n

n
∑

k=m

{g(Xk−m, · · · ,Xk)− E(g(Xk−m, · · · ,Xk)|Xk−m, · · · ,Xk−1)} = 0. P−a.s.

(32)

Proof. Letting σn = n, n ≥ 1, P ≡ Q in Theorem 1, we obtain h(P |Q) ≡ 0,
EQ(g(X

k
k−m)|Xk−1

k−m) = E(g(Xk
k−m)|Xk−1

k−m) at the moment. This implies that D(0) = Ω
when c = 0. Let c = 0. Then (32) follows from (8) and (9).J

3. Some small deviation theorems for the occurrence frequency of the

state groups

In equation (4), if for all n ≥ m,

Qn(Xn = j|Xn−m = i1, · · ·,Xn−1 = im)

= Q(Xn = j|Xn−m = i1, · · ·,Xn−1 = im), ∀i1, · · ·, im, j ∈ S

we call {Xn, n ≥ 0} an mth-order homogeneous Markov chain on the measure Q.

Corollary 2. Let {Xn, n ≥ 0} be an arbitrary stochastic sequence with the joint distribu-
tion (1), h(P |Q) be defined as before. Denote by Sn(j0, · · · , jm) the number of the state
groups (j0, · · · , jm) occurring in (X0, · · · ,Xm), (X1, · · · ,Xm+1), · · · , (Xn−m, · · · ,Xn), and
by Sn(j0, · · · , jm−1) the number of the state groups (j0, · · · , jm−1) occurring in
(X0, · · · ,Xm−1), (X1, · · · ,Xm), · · · , (Xn−m, · · · , Xn−1). That is,

Sn(j0, · · · , jm) =
∑n

k=m
δj0···jm(Xk−m, · · ·Xk), (33)

Sn(j0, · · · , jm−1) =
∑n

k=m
δj0···jm−1

(Xk−m, · · ·Xk−1). (34)

We set
L(c) = {ω : h(P |Q) ≤ c}. (35)
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Then

lim sup
n→∞

1

n
{Sn(j0, · · · , jm)− Sn(j0, · · · , jm−1)q(jm|jm−1

0 )} ≤ (2
√
c+ c),

P − a.s. ω ∈ L(c) (36)

lim inf
n→∞

1

n
{Sn(j0, · · · , jm)− Sn(j0, · · · , jm−1)q(jm|jm−1

0 )} ≥ −2
√
c.

P − a.s. ω ∈ L(c) (37)

Proof. Letting σn = n, n ≥ 0, g(Xk
k−m) = δj0···jm(X

k
k−m), qk(Xk|Xk−1

k−m) = q(Xk|Xk−1
k−m), k ≥

m in Theorem 1, we can obtain L(c) = D(c) and write

n
∑

k=m

{g(Xk
k−m)− EQ(g(X

k
k−m)|Xk−1

k−m)}

=

n
∑

k=m

{δj0···jm(Xk
k−m)− EQ(δj0···jm(X

k
k−m)|Xk−1

k−m)}

=

n
∑

k=m

{δj0···jm(Xk
k−m)−

∑

xk∈S

δj0···jm(X
k−1
k−m, xk)q(xk|Xk−1

k−m)}

=

n
∑

k=m

{δj0···jm(Xk
k−m)− δj0···jm−1

(Xk−1
k−m)q(jm|Xk−1

k−m)}

=
n
∑

k=m

{

δj0···jm(X
k
k−m)− δj0···jm−1

(Xk−1
k−m)q(jm|jm−1

0 )
}

= Sn(j0, · · · , jm)− Sn(j0, · · · , jm−1)q(jm|jm−1
0 ) (38)

and
∑

i0···im∈S

|g(i0, · · · , im)| =
∑

i0···im∈S

|δj0···jm(i0, · · · im)| = 1. (39)

Taking into account (38) and (39), we obtain (36), (37) from (8), (9) immediately. J

Corollary 3. Let {Xn, n ≥ 0} be an arbitrary stochastic sequence with the joint distribu-
tion (1), h(P |Q) be defined as before. Denote by Sn(jm) the number of the state groups
jm occurring in X0, · · · ,Xn. That is,

Sn(jm) =

n
∑

k=0

δjm(Xk). (40)

Then

lim sup
n→∞

1

n
{Sn(jm)−

∑

j0,··· ,jm−1∈S

Sn(j0, · · · , jm−1)q(jm|jm−1
0 )} ≤ (2

√
c+ c)Nm,
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P − a.s. ω ∈ L(c) (41)

lim inf
n→∞

1

n
{Sn(jm)−

∑

j0,··· ,jm−1∈S

Sn(j0, · · · , jm−1)q(jm|jm−1
0 )} ≥ −2

√
cNm.

P − a.s. ω ∈ L(c) (42)

Proof. Letting σn = n, n ≥ 0, g(Xk
k−m) = δjm(Xk), qk(Xk|Xk−1

k−m) = q(Xk|Xk−1
k−m) in

Theorem 1, we can write

n
∑

k=m

{g(Xk
k−m)− EQ(g(X

k
k−m)|Xk−1

k−m)}

=
n
∑

k=m

{δjm(Xk)− EQ(δjm(Xk)|Xk−1
k−m)}

=
n
∑

k=m

{δjm(Xk)−
∑

xk∈S

δjm(xk)q(xk|Xk−1
k−m)}

=

n
∑

k=m

{δjm(Xk)−
∑

j0···jm−1∈S

∑

xk∈S

δj0···jm−1
(Xk−1

k−m)δjm(xk)q(xk|jm−1
0 )}

=
n
∑

k=m

{δjm(Xk)−
∑

j0···jm−1∈S

δj0···jm−1
(Xk−1

k−m)q(jm|jm−1
0 )}

=

n
∑

k=m

δjm(Xk)−
∑

j0···jm−1∈S

q(jm|jm−1
0 )

n
∑

k=m

δj0···jm−1
(Xk−1

k−m)

= Sn(jm)−
m−1
∑

k=0

δjm(Xk)−
∑

j0···jm−1∈S

Sn(j0, · · · , jm−1)q(jm|jm−1
0 ) (43)

and
∑

i0···im∈S

|g(i0, · · · , im)| =
∑

i0···im∈S

|δjm(im)| =
∑

i0···im−1∈S

1 = Nm. (44)

Combining (43), (44) with (8) and (9), we obtain (41), (42) immediately.J

We present a small deviation theorem for harmonic mean of the transitional probability
of the mth-order Markov chain as follows:

Theorem 2. Let {Xn, n ≥ 0} be an arbitrary stochastic sequence with the joint distribu-
tion (1), h(P |Q) be defined by (6), {σn, n ≥ 0} be an increasing nonnegative stochastic
sequence. Then

lim sup
n→∞

1

σn

[σn]
∑

k=m

q(Xk|Xk−1
k−m)−1 ≤ N + (2

√
c+ c)

∑

i0···im∈S

q(im|im−1
0 )−1,
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P − a.s. ω ∈ D(c), (45)

lim inf
n→∞

1

σn

[σn]
∑

k=m

q(Xk|Xk−1
k−m)−1 ≥ N − 2

√
c

∑

i0···im∈S

q(im|im−1
0 )−1,

P − a.s. ω ∈ D(c). (46)

Proof. Letting g(Xk
k−m) = q(Xk|Xk−1

k−m)−1 in Theorem 1, by (8) we can write

lim sup
n→∞

1

σn

[σn]
∑

k=m

{g(Xk
k−m)− EQ(g(X

k
k−m)|Xk−1

k−m)}

lim sup
n→∞

1

σn

[σn]
∑

k=m

{q(Xk|Xk−1
k−m)−1 − EQ(q(Xk|Xk−1

k−m)−1|Xk−1
k−m)

lim sup
n→∞

1

σn

[σn]
∑

k=m

{q(Xk|Xk−1
k−m)−1 −

∑

xk∈S

q(xk|Xk−1
k−m)−1q(xk|Xk−1

k−m)}

lim sup
n→∞

1

σn

[σn]
∑

k=m

{q(Xk|Xk−1
k−m)−1 −N} =

= lim sup
n→∞

1

σn

[σn]
∑

k=m

q(Xk|Xk−1
k−m)−1 − lim sup

n→∞

σn −m+ 1

σn
N

= lim sup
n→∞

1

σn

[σn]
∑

k=m

q(Xk|Xk−1
k−m)−1 −N

≤ (2
√
c+ c)

∑

i0···im∈S

q(im|im−1
0 )−1. (47)

Analogously, from (9) we can get

lim inf
n→∞

1

σn

[σn]
∑

k=m

q(Xk|Xk−1
k−m)−1 −N ≥ −2

√
c

∑

i0···im∈S

q(im|im−1
0 )−1. (48)

(45), (46) follow from (47) and (48), respectively.J
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