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Orthogonal Polynomials with Respect to the Form u =
= λx−1v + δ0 + ((u)1 − λ) δ

′

0

M. Sghaier∗, M. Zaatra

Abstract. In this paper, we study properties of the form (linear functional) u = λx−1v+δ0+(λ−
(u)1)δ

′

0
, where v is a regular form. We give a necessary and sufficient condition for the regularity

of the form u. The coefficients of the three-term recurrence relation, satisfied by the corresponding
sequence of orthogonal polynomials, are given explicitly. A study of the semi-classical character of
the founded families is done. We conclude with some illustrative examples.
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1. Introduction

The semi-classical forms are a natural generalization of the classical forms (Hermite,
Laguerre, Jacobi, and Bessel). Since the system corresponding to the problem of deter-
mining all the semi-classical forms of class s ≥ 1 becomes non-linear, the problem was only
solved when s = 1 and for some particular cases [2,4,9]. Thus, several authors use different
processes in order to obtain semi-classical forms of class s ≥ 1. For instance, let v be a
regular form and let us define a new form u by the relation D(x)u = A(x)v, where A(x)
and D(x) are non-zero polynomials. When D(x) = 1, v is positive-definite and A(x) is a
positive polynomial, Christoffel [7] has proved that u is still a positive-definite form. This
result has been generalized in [8]. The cases A(x) = λ 6= 0 and D(x) = x − c, x2, x3, x4

were treated in [13,14,16,18], where it was shown that under certain regularity conditions
the form u is still regular. Moreover, if v is semi-classical, then u is also semi-classical; see
also [1,3,5,19]. When A(x) = D(x), u is obtained from v by adding finitely many mass
points and their derivates [11,12] and when A(x) and D(x) have no non-trivial common
factor, it was found a necessary and sufficient condition for u to be regular in [10]. When
A(x) and D(x) are of degree equal to one, an extensive study of the form u has been
carried out in [20].

In this paper, we study the form u = λx−1v + δ0 + (λ− (u)1)δ
′

0, (u)1 6= λ which
is equivalent to the above problem with D(x) = x2 and A(x) = λx. For (u)1 6= λ, this
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situation has never been studied before.
The second section is devoted to the preliminary results and notations used in the sequel.
In the third section, an explicit necessary and sufficient condition for the regularity of
the new form is given. We obtain the coefficients of the three-term recurrence relation
satisfied by the new family of orthogonal polynomials. In the fourth section, the stability
of the semi-classical families is proved. Finally, in the last section, we give detailed study
of some examples.

2. Preliminary results

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
dual. We denote by 〈v, f〉 the action of v ∈ P ′ on f ∈ P. In particular, we denote by
(v)n := 〈v, xn〉 , n ≥ 0 , the moments of v. For any form v and any polynomial h, we
let v′, hv, δ0 and x−1v be the forms defined by: 〈v′, f〉 := −〈v, f ′〉, 〈hv, f〉 := 〈v, hf〉
, 〈δ0, f〉 := f(0) and

〈

x−1v, f
〉

:= 〈v, θ0f〉 where, in general,
(

θcf
)

(x) =
f(x)− f(c)

x− c
,

f ∈ P, c ∈ C.

Then, it is straightforward to prove that for f, g ∈ P and for v ∈ P ′ we have

x−1(xv) = v − (v)0δ0, (1)

x(x−1v) = v, (2)

x−1δ0 = −δ
′

0, (3)

(fv)
′

= f
′

v + fv
′

, (4)

(θ0(fg))(x) = g(x)(θ0f)(x) + f(0)(θ0g)(x). (5)

A form v is called regular if there exists a sequence of polynomials {Sn}n≥0 (degSn ≤ n)
such that 〈v, SnSm〉 = rnδn,m , rn 6= 0, n ≥ 0.

Then degSn = n, n ≥ 0 and we can always suppose each Sn is monic. In such a case, the
sequence {Sn}n≥0 is unique. It is said to be the sequence of monic orthogonal polynomials
with respect to u. In the sequel, it will be denoted as MOPS. It is a very well known
fact that the sequence {Sn}n≥0 satisfies the recurrence relation (see, for instance, the
monograph by Chihara [6])

Sn+2(x) = (x− ξn+1)Sn+1(x)− ρn+1Sn(x) , n ≥ 0 ,

S1(x) = x− ξ0 , S0(x) = 1 .
(6)

with
(

ξn, ρn+1

)

∈ C× C− {0} , n ≥ 0 . By convention, we set ρ0 = (v)0 = 1.

In this case, let {S(1)
n }n≥0 be the first order associated sequence for the sequence

{Sn}n≥0 satisfying the recurrence relation

S
(1)
n+2(x) = (x− ξn+2)S

(1)
n+1(x)− ρn+2S

(1)
n (x), n ≥ 0,

S
(1)
1 (x) = x− ξ1, S

(1)
0 (x) = 1, (S

(1)
−1(x) = 0).

(7)
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Another important representation of S
(1)
n (x) is (see [6])

S(1)
n (x) :=

〈

v,
Sn+1(x)− Sn+1(ζ)

x− ζ

〉

. (8)

Also, let {Sn(., µ)}n≥0 be the co-recursive polynomials for the sequence {Sn}n≥0 satisfying
[6]

Sn(x, µ) = Sn(x)− µS
(1)
n−1(x), n ≥ 0. (9)

The form u is called normalized if (u)0 = 1. In this paper, we suppose that the forms are
normalized.

3. The study of u = λx
−1
v + δ0 + ((u)1 − λ) δ

′

0

3.1. General case

Let v be a regular form and {Sn}n≥0 be the corresponding MOPS. For λ ∈ C − {0},
we can define a new form u ∈ P ′ by the relation

u = λx−1v + δ0 + ((u)1 − λ) δ
′

0. (10)

Equivalently, from (1), (2) and (10) we have

x2u = λxv. (11)

The form u depends on two arbitrary parameters (u)1 and λ.

The case (u)1 = λ was treated in [18] so henceforth, we assume λ 6= (u)1.

If we suppose that the form v has the following integral representation:

〈v, f〉 =
∫ +∞

−∞
V (x)f(x) dx, f ∈ P, with (v)0 =

∫ +∞

−∞
V (x) dx = 1,

where V is a locally integrable function with rapid decay and continuous at the point
x = 0, then the form u is represented by

〈u, f〉 = λP

∫ +∞

−∞

V (x)

x
f(x) dx+

{

1− λP

∫ +∞

−∞

V (x)

x
dx

}

f(0) + ((u)1 − λ)f
′

(0), (12)

where

P

∫ +∞

−∞

V (x)

x
f(x) dx = lim

ε→0

{
∫ −ε

−∞

V (x)

x
f(x) dx+

∫ +∞

ε

V (x)

x
f(x) dx

}

.

Suppose u is regular, and let {Qn}n≥0 be its corresponding MOPS. It satisfies

Qn+2(x) = (x− βn+1)Qn+1(x)− γn+1Qn(x) , n ≥ 0 ,

Q1(x) = x− β0 , Q0(x) = 1 .
(13)
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It follows from (11) that the sequence {Qn}n≥0, when it exists, satisfies the following
finite-type relations [15, p 301, Proposition 2.1.]:

xQn+2(x) = Sn+3(x) + cn+2Sn+2(x) + bn+1Sn+1(x) + anSn(x) , n ≥ 0

xQ1(x) = S2(x) + c1S1(x) + b0 , xQ0(x) = S1(x) + c0 ,
(14)

with (an, bn, cn) ∈ C− {0} × C
2.

Moreover, the sequence {Qn}n≥0 is orthogonal with respect to u if and only if

〈u, Qn+1(x)〉 = 0, 〈u, xQn+2(x)〉 = 0, n ≥ 0, 〈u, xQ1(x)〉 6= 0 , (15)

since the other orthogonality condition comes from (14).

Substituting x by 0 in (14), we get

cn+2Sn+2(0) + bn+1Sn+1(0) + anSn(0) = −Sn+3(0), n ≥ 0, (16)

c1S1(0) + b0 = −S2(0), (17)

c0 = ξ0. (18)

Subtracting (16)-(17) from (14), we obtain after dividing by x (for n ≥ 0)

Qn+2(x) = (θ0Sn+3)(x) + cn+2(θ0Sn+2)(x) + bn+1(θ0Sn+1)(x) + an(θ0Sn)(x), (19)

Q1(x) = (θ0S2)(x) + c1. (20)

From (14)-(15) and (19)-(20), we have































0 = 〈u, Qn+2(x)〉
= 〈u, (θ0Sn+3)(x)〉 + cn+2〈u, (θ0Sn+2)(x)〉+ bn+1〈u, (θ0Sn+1)(x)〉

+an〈u, (θ0Sn)(x)〉, n ≥ 0,

0 = 〈u, xQn+2(x)〉
= 〈u, Sn+3(x)〉+ cn+2〈u, Sn+2(x)〉+ bn+1〈u, Sn+1(x)〉 + an〈u, Sn(x)〉, n ≥ 0,

(21)

{

0 = 〈u, Q1(x)〉 = 〈u, (θ0S2)(x)〉+ c1,

0 6= 〈u, xQ1(x)〉 = 〈u, S2(x)〉 + c1〈u, S1(x)〉 + b0.
(22)

The determinant of the system defined by (16) and (21) is

∆n :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sn+2(0) Sn+1(0) Sn(0)

〈u, Sn+2〉 〈u, Sn+1〉 〈u, Sn〉

〈u, θ0Sn+2〉 〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, n ≥ 0, (23)
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Then the above system is equivalent to

∆nan = −∆n+1, n ≥ 0 (24)

∆nbn+1 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sn+2(0) Sn+3(0) Sn(0)

〈u, Sn+2〉 〈u, Sn+3〉 〈u, Sn〉

〈u, θ0Sn+2〉 〈u, θ0Sn+3〉 〈u, θ0Sn〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, n ≥ 0, (25)

∆ncn+2 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sn+3(0) Sn+1(0) Sn(0)

〈u, Sn+3〉 〈u, Sn+1〉 〈u, Sn〉

〈u, θ0Sn+3〉 〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, n ≥ 0. (26)

Proposition 1. The form u is regular if and only if ∆n 6= 0, n ≥ 0.

Proof. Necessity. If {Qn}n≥0 is orthogonal, then an 6= 0, n ≥ 0. This implies ∆n 6=
0, n ≥ 0. Assume the contrary, i.e. there exists an n0 ≥ 1 such that ∆n0

= 0. Then it
follows from (24) that ∆0 = 0 = −〈u, xQ1(x)〉 6= 0, which is a contradiction.
Sufficiency. Using (11) we get that the condition 〈u, Q1(x)〉 = 0 is satisfied for

c1 = ξ1 + ξ0 − (u)1. (27)

Then, from (16)-(17) and (27) we have

c0 = ξ0,

b0 = ρ1 − ξ0((u)1 − ξ0).
(28)

From (22) and (17) we have

〈u, xQ1(x)〉 = 〈u, (θ0S2)(x)〉(S1(0)− 〈u, S1(x)〉) + 〈u, S2(x)〉 − S2(0) = ∆0 6= 0.

We had just proved that the initial conditions (17)-(18) and (22) are satisfied. Further, the
system defined by (16) and (21) is a Cramer system whose solution is given by (24)-(26).J

Proposition 2. We may write for n ≥ 0

βn = ξn+1 + cn − cn+1, (29)

γ1 = ∆0, γ2 = λ
a0

∆0
, γn+3 =

an+1

an
ρn+1, (30)

γn+2 − ρn+3 = bn+1 − bn+2 + cn+2(ξn+2 − ξn+3 + cn+3 − cn+2), (31)

cn+1γn+2 − cn+2ρn+2 = an − an+1 + bn+1(ξn+1 − ξn+3 + cn+3 − cn+2), (32)

bnγn+2 − bn+1ρn+1 = an(ξn − ξn+3 + cn+3 − cn+2). (33)
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Proof. After multiplication of (13) for n → n + 1 by x, we substitute xQk+1 by
Sk+2 + ck+1Sk+1 + bkSk + ak−1Sk−1 with k = n+2, n+1, n and we apply the recurrence
relation (6). Then the comparison of the coefficients of Sn+3 and Sn−1 ( resp. Sn+2, Sn+1

and Sn )yields (29)-(30) for n ≥ 1 by taking into account the expression for an from (24)(
resp. (31)-(33) by taking into account the expression for βn+2 from (29)).

Multiplying (13) by x with n = 0 and using the same proceeding, we prove (29) for n = 1.

From (14) and (18) we obtain (29) for n = 0.

By (13), we have γ1 = 〈u, xQ1〉 = ∆0 and γ2 =
〈u, x2Q2〉
〈u, xQ1〉

= 〈u, x2Q2〉
∆0

.

So, using (11), (18) and (24), we get γ2 = −λ
∆1

∆2
0

. J

The computation of ∆n

As was seen above, it is important to have an explicit expression for ∆n, n ≥ 0.

From (8) and (10) we have

〈u, Sn+1〉 = λS(1)
n (0) + Sn+1(0) + ΘS

′

n+1(0), n ≥ 0, (34)

〈u, xSn+1(x)〉 = ΘSn+1(0), n ≥ 0, (35)

〈u, θ0Sn+1〉 = λ(S(1)
n )

′

(0) + S
′

n+1(0) +
1

2
ΘS

′′

n+1(0), n ≥ 0, (36)

with

Θ = (u)1 − λ. (37)

Using (6) and (23), we obtain

∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 Sn+1(0) Sn(0)

〈u, xSn+1(x)〉 〈u, Sn+1(x)〉 〈u, Sn(x)〉

〈u, Sn+1(x)〉 〈u, (θ0Sn+1)(x)〉 〈u, (θ0Sn)(x)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, n ≥ 0, (38)

that is

∆n = −Sn+1(0)

∣

∣

∣

∣

∣

∣

〈u, xSn+1(x)〉 〈u, Sn(x)〉

〈u, Sn+1(x)〉 〈u, (θ0Sn)(x)〉

∣

∣

∣

∣

∣

∣

+Sn(0)

∣

∣

∣

∣

∣

∣

〈u, xSn+1(x)〉 〈u, Sn+1(x)〉

〈u, Sn+1(x)〉 〈u, (θ0Sn+1)(x)〉

∣

∣

∣

∣

∣

∣

. (39)
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Therefore, using (34)-(36) we obtain

∆n = λSn+1(0,−λ)
(

Sn+1(0)S
(1)
n−1(0)− Sn(0)S

(1)
n (0)

)

+

+Θ
(

Sn(0)Xn,n+1(0) − Sn+1(0)Xn,n(0) − λS
(1)
n (0)Yn,n(0)

)

, n ≥ 0
(40)

with (for n,m ≥ 0)

Xn,m(0) = λ
(

Sn+1(0)(S
(1)
m−1)

′

(0)− S
(1)
m−1(0)S

′

n+1(0)
)

+1
2Θ
(

Sn+1(0)S
′′

m(0)− 2S
′

n+1(0)S
′

m(0)
)

,
(41)

Yn,m(0) = Sm(0)S
′

n+1(0)− Sn+1(0)S
′

m(0). (42)

Moreover, if the form u is regular we have from (25), (26) and (6)

bn+1 = ρn+2 −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sn+2(0) 0 Sn(0)

〈u, Sn+2(x)〉 〈u, xSn+2(x)〉 〈u, Sn(x)〉

〈u, (θ0Sn+2)(x)〉 〈u, Sn+2(x)〉 〈u, (θ0Sn)(x)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆−1
n , (43)

cn+2 = ξn+2 −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 Sn+1(0) Sn(0)

〈u, xSn+2(x)〉 〈u, Sn+1(x)〉 〈u, Sn(x)〉

〈u, Sn+2(x)〉 〈u, (θ0Sn+1)(x)〉 〈u, (θ0Sn)(x)〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆−1
n . (44)

Then, using (34)-(36) and (41)-(42), the last equations become for n ≥ 0

bn+1 = ρn+2 +∆−1
n

{

λSn+2(0,−λ)
(

Sn+2(0)S
(1)
n−1(0)− Sn(0)S

(1)
n+1(0)

)

+Θ
(

Sn(0)Xn+1,n+2(0) − Sn+2(0)Xn+1,n(0)− λS
(1)
n+1(0)Yn+1,n(0)

)

} (45)

and

cn+2 = ξn+2 +∆−1
n

{

λSn+2(0,−λ)
(

Sn(0)S
(1)
n (0)− Sn+1(0)S

(1)
n−1(0)

)

+Θ
(

Sn+1(0)Xn+1,n(0)− Sn(0)Xn+1,n+1(0) + λS
(1)
n+1(0)Yn,n(0)

)

}

.

(46)

Remark 1. 1. In fact, using the well known identity (see [6], page 86)

Sn(0)S
(1)
n (0)− Sn+1(0)S

(1)
n−1(0) =

n
∏

µ=0

ρµ := τn 6= 0, n ≥ 0, (47)
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and the confluent Christoffel-Darboux formula (see [6], page 23)

Sn(0)S
′

n+1(0)− Sn+1(0)S
′

n(0) = τn

n
∑

ν=0

S2
ν(0)

τν
, n ≥ 0. (48)

we can rewrite (40) for n ≥ 0 as follows:

∆n = −λτnSn+1(0,−λ)+Θ

{

Sn(0)Xn,n+1(0)−Sn+1(0)Xn,n(0)−λτnS
(1)
n (0)

n
∑

ν=0

S2
ν(0)

τν

}

.

(49)

2. Taking (u)1 = λ in (49), we can easily obtain the result given in [18]. Indeed, the
form u = λx−1v + δ0 is regular if and only if Sn+1(0,−λ) 6= 0, n ≥ 0.

3. From (6) and (48) we get

Sn(0)S
′

n+2(0)− Sn+2(0)S
′

n(0) = Sn+1(0)Sn(0)− ξn+1τn

n
∑

ν=0

S2
ν(0)

τν
, n ≥ 0, (50)

and from (8) and (47), we have

Sn+2(0)S
(1)
n−1(0) − Sn(0)S

(1)
n+1(0) = τnξn+1, n ≥ 0. (51)

The interest of the last two results will be shown further on.

3.2. Particular case: v is symmetric

We recall that a form v is called symmetric if (v)2n+1 = 0, n ≥ 0. The conditions
(v)2n+1 = 0, n ≥ 0 are equivalent to the fact that the corresponding MOPS {Sn}n≥0 sat-
isfies the recurrence relation (6) with ξn = 0, n ≥ 0 [6].
In the sequel, the form v will be supposed regular and symmetric.

Proposition 3. When the form v is symmetric, the form u (defined by (10)) is regular if
and only if

dn := λ+ΘΛn 6= 0, n ≥ 0 (52)

where

Λn = 1 +

n−1
∑

ν=0

ν
∏

k=0

ρ2k+1

ρ2k+2
, , n ≥ 0.

(

−1
∑

ν=0

= 0

)

(53)

For the proof we use the following lemmas:
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Lemma 1. [14] When {Sn}n≥0 given by (6) is symmetric we have

S2n+2(0) = (−1)n+1
n
∏

ν=0

ρ2ν+1, S2n+1(0) = 0, n ≥ 0,

S
(1)
2n+2(0) = (−1)n+1

n
∏

ν=0

ρ2ν+2, S
(1)
2n+1(0) = 0, n ≥ 0,

(S
(1)
2n )

′

(0) = 0, n ≥ 0.

Lemma 2. When {Sn}n≥0 given by (6) is symmetric we have

S
′

2n(0) = 0, S
′′

2n+1(0) = 0, n ≥ 0, (54)

S
′

2n+1(0) = (−1)nΛn

n
∏

ν=0

ρ2ν , n ≥ 0. (55)

Proof. We have Sn(−x) = (−1)nSn(x), n ≥ 0 because u is a symmetric form (see [6]
Theorem 4.3). As a consequence, we easily deduce (54).

We prove (55) by induction. For n = 0, from (6) we obtain S
′

1(0) = 1. Therefore, (55) is
valid for n = 0. Now, suppose (55) for 0 ≤ m ≤ n. Then, taking n −→ 2n+ 2 in (6) with
ξn = 0 from Lemma 1 we obtain

S
′

2n+3(0) = (−1)n+1
n
∏

ν=0

ρ2ν+1 + (−1)n+1Λn

n+1
∏

ν=0

ρ2ν .

Therefore,

S
′

2n+3(0) = (−1)n+1

(

n+1
∏

ν=0

ρ2ν

){

n
∏

ν=0

ρ2ν+1

ρ2ν
+ Λn

}

= (−1)n+1Λn+1

n+1
∏

ν=0

ρ2ν .

Hence we have (55) for n ≥ 0.J

Proof. (of Proposition 3.) Following Lemma 1 and Lemma 2, we have for (41)-(42)

X2n,2n+1(0) = −S
′

2n+1(0)
(

λS
(1)
2n (0) + ΘS

′

2n+1(0)
)

, X2n+1,2n+1(0) = 0, n ≥ 0.

Y2n,2n(0) = S2n(0)S
′

2n+1(0), n ≥ 0.

Then, (49) becomes

∆2n = −S2n(0)
(

λS
(1)
2n (0) + ΘS

′

2n+1(0)
)2

, n ≥ 0,

∆2n+1 = λS2
2n+2(0)S

(1)
2n (0), n ≥ 0.

(56)
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Using the Lemma 1 and Lemma 2, we obtain

∆2n = (−1)n+1τ2nd
2
n

n
∏

ν=0

ρ2ν , n ≥ 0,

∆2n+1 = λ(−1)nτ2n+1

n
∏

ν=0

ρ2ν+1, n ≥ 0.

(57)

Therefore, u is regular if and only if dn 6= 0, n ≥ 0. J

In such conditions, from (24), (27)-(28), (45)-(46) and (50)-(51) we get

a2n = λρ2n+1Ωnd
−2
n , a2n+1 = − (ρ2n+2dn+1)

2 (λΩn)
−1 , n ≥ 0, (58)

b0 = ρ1, c0 = 0, c1 = −(u)1, (59)

b2n+1 = ρ2n+2 +ΘΩnd
−1
n , b2n+2 = ρ2n+3, n ≥ 0, (60)

c2n+2 = λΩnd
−2
n , c2n+3 = −ρ2n+2dn+1dn(λΩn)

−1, n ≥ 0, (61)

β0 = (u)1, β2n+2 = c2n+2 − c2n+3, n ≥ 0, (62)

β1 = −(u)1 −
ρ1λ

(u)21
, β2n+3 = c2n+3 − c2n+4, n ≥ 0, (63)

γ1 = −(u)21, γ2n+3 = −
(

dn+1dnρ2n+2λ
−1Ω−1

n

)2
, n ≥ 0, (64)

γ2 = −
(

ρ1λ

(u)21

)2

, γ2n+4 = −
(

λΩn+1d
−2
n+1

)2
, n ≥ 0, (65)

with Ωn =

n
∏

ν=0

ρ2ν+1

ρ2ν
, n ≥ 0.

Remark 2. As an immediate consequence of (52), we have: if v is symmetric and positive
definite form and (u)1 = λ+ 1, then u is regular for every λ ∈ C−]−∞, 0].

4. The semi-classical case

Let us recall that a form v is called semi-classical when it is regular and there exist two
polynomials Φ and Ψ such that (see [17]):

(Φv)′ +Ψv = 0 , deg(Ψ) ≥ 1 , Φ ismonic. (66)

The class of the semi-classical form v is s = max
(

degΨ − 1,deg Φ − 2
)

if and only if the
following condition is satisfied:

∏

c

(

|Φ′(c) + Ψ(c)|+
∣

∣

〈

v, θcΨ+ θ2cΦ
〉
∣

∣

)

> 0 , (67)
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where c belongs to the set of zeros of Φ [18].

In the sequel, we will assume v is a semi-classical form of class s satisfying (66). Multiplying
(66) by λx and using (4), we obtain

(λxΦv)′ +
(

λxΨ− λΦ
)

v = 0 . (68)

So, if Φ(0) = 0, by using (11) we obtain
(

x2Φu
)′
+
(

x2Ψ − xΦ
)

u = 0 , and, if Φ(0) 6= 0,
multiplying (68) by x and using (11) we get

(

Φ̃u
)′

+ Ψ̃u = 0 (69)

with
{

Φ̃(x) = x3Φ(x) ,

Ψ̃(x) = x
(

x2Ψ(x)− 2xΦ(x)
)

.
(70)

It is clear that if the form u is regular, then it is also semi-classical, and the class s̃ of u
is at most s+ 3.

Proposition 4. The class of u depends only on the zero x = 0.

For the proof we use the following Lemma:

Lemma 3. For all zeros a 6= 0 of Φ we have

Ψ̃(a) + Φ̃
′

(a) = a3(Ψ(a) + Φ
′

(a)), (71)

and
〈u, θaΨ̃ + θ2aΦ̃〉 = a(Θ + a)(Ψ(a) + Φ

′

(a)) + λa2
〈

v, θaΨ+ θ2aΦ
〉

. (72)

Proof. Let a be a zero of Φ and Φa(x) = (θaΦ)(x). Then, from (70) we have

Φ̃(x) = x3(x− a)Φa(x). (73)

Using the definition of the operator θa, it is easy to prove that for f ∈ P we have

θ0(θaf) = θa(θ0f). (74)

Therefore, from (11) and (73)-(74), we get

〈

u, θ2aΦ̃
〉

= λ
〈

v, (θa(ζ
2)Φa(ζ)))(x)

〉

+ a(a+Θ)Φ
′

(a).

Now, taking g(x) = x2 and f(x) = Φa(x) in (5), we get

〈

v, (θa(ζ
2Φa))(x)

〉

= 〈v, (x+ a)Φa(x)〉+ a2
〈

v, θ2aΦ
〉

.

Then
〈

u, θ2aΦ̃
〉

= λ 〈v, (x+ a)Φa(x)〉+ λa2
〈

v, θ2aΦ
〉

+ a(a+Θ)Φ
′

(a). (75)
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Using the same proceeding as we did to obtain (75), we easily prove that

〈

u, θaΨ̃
〉

= λa2 〈v, θaΨ〉+ λ 〈v, (x+ a)Ψ(x)− 2xΦa〉+ a(a+Θ)Ψ(a). (76)

Thus, from (75)-(76) we obtain

〈

u, θaΨ̃ + θ2aΦ̃
〉

= a(Θ + a)(Ψ(a) + Φ
′

(a)) + λa2〈v, θaΨ+ θ2aΦ 〉+λ〈v, −Φ+ (x+ a)Ψ〉 .

But from (66) we have
〈

(Φv)
′

+Ψv, (x+ a)
〉

= 0. (77)

Then the last equation becomes (72).

From (70) we have Φ̃′(a) = a3Φ′(a) and Ψ̃(a) = a3Ψ(a). Hence, (71) holds.J

Proof. (of Proposition 4.) Let a be a zero of Φ such that a 6= 0.

If Ψ(a) + Φ
′

(a) = 0, using (72) we have
〈

u, θaΨ̃ + θ2aΦ̃
〉

6= 0, since v is semi-classical and

so satisfies (67).

If Ψ(a) + Φ
′

(a) 6= 0, then from (71) we obtain Ψ̃(a) + Φ̃
′

(a) 6= 0.

In any case, we cannot simplify by x− a.J

Proposition 5. Let v be a semi-classical form of class s satisfying (66). Then the form
u given by (10) is also semi-classical of class s̃ satisfying (69). Moreover,

1. s̃ = s+ 3 if Φ(0) 6= 0;

2. s̃ = s+ 2 if Φ(0) and Ψ(0) 6= 0;

3. s̃ = s+1 if Φ(0) = 0, Ψ(0) = 0 and λ〈v, θ0Ψ+θ20Φ〉+Φ
′

(0)+Θ(Ψ
′

(0)+ 1
2Φ

′′

(0)) 6= 0.

Proof. From (70) we have Ψ̃(0) + Φ̃
′

(0) = 0 and 〈u, θ0Ψ̃ + θ20Φ̃〉 = −ΘΦ(0).

Since Θ 6= 0, we have the following:

1. If Φ(0) 6= 0, then it is not possible to simplify by x according to standard criterion
(67), which means that the class of u is s̃ = s+ 3.

2. If Φ(0) = 0, then it is possible to simplify by x. Therefore, u fulfils (69) with

Φ̃(x) = x2Φ(x), Ψ̃(x) = x(xΨ(x)− Φ(x)). (78)
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Here we have
Φ̃

′

(0) + Ψ̃(0) = 0, 〈u, θ0Ψ̃ + θ20Φ̃〉 = ΘΨ(0).

If Ψ(0) 6= 0, then it is not possible to simplify by x and the class of u is s̃ = s+ 2.

3. If Φ(0) = Ψ(0) = 0, we can simplify (69)-(78) by x. We obtain

Φ̃(x) = xΦ(x), Ψ̃(x) = xΨ(x). (79)

Thus, we have

Φ̃
′

(0) + Ψ̃(0) = 0, 〈u, θ0Ψ̃ + θ20Φ̃〉 = λ〈v, θ0Ψ+ θ20Φ〉+Φ
′

(0) + Θ(Ψ
′

(0) +
1

2
Φ

′′

(0)).

If λ〈v, θ0Ψ+θ20Φ〉+Φ
′

(0)+Θ(Ψ
′

(0)+ 1
2Φ

′′

(0)) 6= 0, then it is not possible to simplify,
which means that the class of u is s̃ = s+ 1.

N

5. Illustrative Examples

1. We study the problem (10) with v = H(µ) where H(µ) is the Generalized Hermite
form. In this case, the form v is symmetric. This form has the following integral
representation [6]:

〈v, f〉 = 1

Γ(µ+ 1
2)

∫ +∞

−∞
e−x2 |x|2µf(x)dx, Reµ > −1

2
.

Therefore,

P

∫ +∞

−∞

e−x2 |x|2µ
x

dx = 0.

Thus, using (12) we obtain the following integral representation of u:

〈u, f〉 = λ

Γ(µ+ 1
2)
P

∫ +∞

−∞
sgn(x)|x|2µ−1e−x2

f(x)dx+ f(0) + Θf
′

(0).

The form v is semi-classical of class s = 1, it satisfies (66) with [2]

Φ(x) = x, Ψ(x) = 2x2 − (2µ + 1), µ 6= 0. (80)

The sequence {Sn}n≥0 fulfils (6) with [16]

ξn = 0, ρ2n+1 = n+ µ+
1

2
, ρ2n+2 = n+ 1, 2µ 6= −2n− 1, n ≥ 0. (81)

First, we study the regularity of the form u.
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We have from (81)

ρ2k+1

ρ2k+2
=

k + µ+ 1
2

k + 1
.

Then
ν
∏

k=0

ρ2k+1

ρ2k+2
=

Γ(ν + µ+ 3
2)

Γ(µ + 1
2 )Γ(ν + 2)

=
1

(ν + 1)Γ(µ + 1
2)
hν ,

with

hn =
Γ(n+ µ+ 3

2)

Γ(n+ 1)
, n ≥ 0

and

hn+1 =
n+ µ+ 3

2

n+ 1
hn, n ≥ 0.

Therefore,

hn+1 − hn =
µ+ 1

2

n+ 1
hn, n ≥ 0,

and, consequently, from the above results we obtain

n−1
∑

ν=0

ν
∏

k=0

ρ2k+1

ρ2k+2
=

1

Γ(µ+ 3
2)

n−1
∑

ν=0

(hν+1 − hν) =
1

Γ(µ+ 3
2)

Γ(n+ µ+ 3
2)

Γ(n+ 1)
− 1, n ≥ 1.

Finally, (53) and (52) become respectively

Λn =
Γ(n+ µ+ 3

2)

Γ(µ+ 3
2 )Γ(n+ 1)

, n ≥ 0 (82)

and

dn =

(

1− Γ(n+ µ+ 3
2)

Γ(µ+ 3
2)Γ(n+ 1)

)

λ+ (u)1
Γ(n+ µ+ 3

2)

Γ(µ + 3
2 )Γ(n+ 1)

, n ≥ 0. (83)

Then, u is regular for every λ 6= 0 and (u)1 such that

λ−1(u)1 6= 1− Γ(µ+ 3
2)Γ(n+ 1)

Γ(n+ µ+ 3
2)

, n ≥ 0. (84)

Using (81) and (83), we obtain for (58)-(61)

a2n =
λ(n+ µ+ 1

2)(µ + 1
2)Λn

d2n
, a2n+1 = −(n+ 1)2d2n+1

λ(µ+ 1
2)Λn

, n ≥ 0, (85)

b0 = µ+
1

2
, b2n+1 = n+1+

((u)1 − λ)(µ + 1
2)Λn

dn
, b2n+2 = n+ µ+

3

2
, n ≥ 0, (86)

c0 = 0, c1 = −(u)1, c2n+2 =
λ(µ + 1

2)Λn

d2n
, c2n+3 = −dndn+1(n+ 1)

λ(µ + 1
2)Λn

, n ≥ 0. (87)
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Therefore, we have for (62)-(65)

β0 = (u)1, β2n+2 =
λ(µ+ 1

2)Λn

d2n
+

dndn+1(n + 1)

λ(µ + 1
2)Λn

, n ≥ 0,

β1 = −(u)1 −
λ(µ+ 1

2)

(u)21
, β2n+3 = −dndn+1(n+ 1)

λ(µ+ 1
2)Λn

− λ(µ+ 1
2)Λn+1

d2n+1

, n ≥ 0,

(88)

γ1 = −(u)21, γ2n+3 = −
(

dndn+1(n + 1)

λ(µ + 1
2)Λn

)2

, n ≥ 0,

γ2 = −
(

λ(µ + 1
2)

(u)21

)2

, γ2n+4 = −
(

λ(µ+ 1
2)Λn+1

d2n+1

)2

, n ≥ 0.

(89)

Finally, from Proposition 5, (81) and (78), we obtain that the form u is semi-classical
of class s̃ = 3 and fulfils the functional equation (69) with

Φ̃(x) = x3, Ψ̃(x) = 2x2(x2 − µ− 1). (90)

2. We study the problem (10) with v = J (−1
2 ,

1
2) where J is the Jacobi form. In this

case, the form v is not symmetric. This form has the following integral representa-
tion:

〈v, f〉 =
∫ +∞

−∞
V (x)f(x), with [8] V (x) = 1

π
Y (1−x2)

√

1−x
1+x

where Y (x) =

{

1, x > 0;
0, x ≤ 0.

Therefore,

P

∫ 1

−1

1− x

x
√
1− x2

dx = −π.

Thus, using (12), we obtain the following integral representation of u:

〈u, f〉 = λ

π
P

∫ 1

−1

1

x

√

1− x

1 + x
+ (1 + λ)f(0) + Θf

′

(0).

The form v is classical (semi-classical of class s = 0), it satisfies (66) with [3]

Φ(x) = x2 − 1, Ψ(x) = −2x− 1. (91)

The sequence {Sn}n≥0 fulfils (6) with [3]

ξ0 =
1

2
, ξn+1 = 0, ρn+1 =

1

4
, n ≥ 0. (92)

First, we study the regularity of the form u.

From (6), (7) and (92), we can obtain by induction

S2n(0) =
(−1)n

4n
, S2n+1(0) =

(−1)n+1

22n+1
, n ≥ 0,



40 M. Sghaier , M. Zaatra

S
(1)
2n (0) =

(−1)n

4n
, S

(1)
2n+1(0) = 0, n ≥ 0,

S
′

2n+1(0) =
(−1)n(n + 1)

4n
, S

′

2n+2(0) =
(−1)n+1(n + 1)

22n+1
, n ≥ 0,

S
′′

2n+2(0) =
(−1)n(n+ 1)(n + 2)

4n
, S

′′

2n+3(0) =
(−1)n+1(n + 1)(n+ 2)

22n+1
, n ≥ 0,

(S
(1)
2n )

′

(0) = 0, (S
(1)
2n+1)

′

(0) =
(−1)n(n+ 1)

4n
, n ≥ 0.

Then, from (41) we get for n ≥ 0

X2n,2n+1(0) = −(n+ 1)
(3n + 2)(u)1 − 3nλ

24n+1
,

X2n,2n(0) = n
(n+ 3)λ− (n+ 1)(u)1

42n
,

X2n+1,2n+2(0) = −(n+ 1)
(3n + 4)(u)1 − (3n+ 2)λ

24n+3
,

X2n+1,2n+1(0) = (n+ 1)
(n + 2)(u)1 − nλ

42n+1
.

Therefore, from (49) and the above results we have for n ≥ 0

∆2n = (−1)n

26n+1

(

λ− 2λ2 −Θ(2(n+ 1)(2n − 1)Θ + 4(n + 1)(u)1)
)

,

∆2n+1 =
(−1)nλ

43n+2
(λ+Θ(2(n+ 1)(2n + 1)Θ + 4(n + 1)(u)1)) .

(93)

In particular, we have: if (λ, (u)1) ∈ (iR) × (iR), then ∆n 6= 0, n ≥ 0, since

=∆2n = −iλ
(−1)n

26n+1 6= 0 and <∆2n+1 =
(−1)nλ2

43n+2 6= 0.

Using (50)-(51), (92), we obtain for (24), (27)-(28) and (45)-(46)

an = −∆n+1

∆n

, n ≥ 0,

b0 =
1

2
(1− (u)1), b2n+2 =

1

4
+

(−1)nΘ(4(n + 1)Θ + 2(u)1)

∆2n+143n+3
, n ≥ 0,

b2n+1 =
1

4
+

(−1)nΘ(−(2n+ 1)Θ − (u)1)

∆2n43n+1
, n ≥ 0,

c0 =
1

2
, c2n+2 = −(−1)n (λ+ 2Θ(2n + 1) (nΘ+ (u)1))

∆2n43n+1
, n ≥ 0,

c1 =
1

2
−(u)1, c2n+3 =

(−1)n
(

λ− 2λ2 +Θ(−2n(2n + 3)Θ − 2(2n + 3)(u)1)
)

∆2n+126n+5
, n ≥ 0.
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Therefore, we have for (29) and (30)

β0 = (u)1, β1 =
λ− 2(u)1

(

λ− (u)21
)

λ− 2(u)21
, βn+2 = cn+2 − cn+3, n ≥ 0,

γ1 =
λ

2
− (u)21, γ2 = −λ

−3Θ(Θ + (u)1)

4
(

λ− 2(u)21
)2 , γn+3 =

∆n+2∆n

4∆2
n+1

, n ≥ 0.

Finally, from Proposition 5, (91) and (70), we obtain that the form u is semi-classical
of class s̃ = 3 and fulfils the functional equation (69) with

Φ̃(x) = x3(x2 − 1), Ψ̃(x) = x2(−4x2 − x+ 2).
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