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On Hardy type inequality in variable exponent Lebesgue
space Lp(.)(0, l)

F. I. Mamedov

Abstract. We study a variable exponent Hardy type inequality∥∥x−1Hf
∥∥
Lp(.)(0,l)

≤ C ‖f‖Lp(.)(0,l) ; f ≥ 0.

in the norms of variable exponent Lebesgue spaces Lp(.)(0, l). In terms of regularity
conditions for p : (0, l) → (1,∞), we derive necessary and sufficient conditions for this
inequality to hold for all f ∈ Lp(.)(0, l).
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1. Introduction

In this paper, we study a variable exponent Hardy type inequality∥∥x−1Hf∥∥
Lp(.)(0,l)

≤ C ‖f‖Lp(.)(0,l) ; f ≥ 0, (1)

where Hf(x) =

x∫
0

f(t)dt, l > 0, the constant C > 0 depends on l and the function

p. This topic was a subject of recent works [2], [4], [5], [8], [9], [10], [11],[12], [13],
[14], [15]. According to those works (see, e.g. [4], [9], [10], [13]), the condition

A := lim sup
x→0

|p (x)− p (0)| ln 1

x
<∞, (2)

is sufficient for the inequality (1) to hold if the p : (0; l)→ [1;∞) is a measurable
function on (0, l) and is separate from zero and infinity. In Theorem 1, we prove
some extension of this result, where the condition

B := lim sup
x→0

∣∣∣p (x)− p
(x

2

)∣∣∣ ln 1

x
<∞, (3)
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is assumed for the exponent function.
In [9], an example of exponent function p was constructed such that the

inequality (1) and the condition (2) are violated for that simultaneously. Though,
that example indicates essentiality of condition (2) for the exponent p, it does
not proves, in general, its necessity. In this paper, we prove that the condition
(3) is necessary if the function p increases near the origin (see, Theorem 2).

It is not difficult to show that no condition of logariphmic type is needed for
the exponent when the exponent p is non increasing near the origin.

From the trivial inequality∣∣∣p(x)− p
(x

2

)∣∣∣ ln 1

x
≤ |p(x)− p (0)| ln 1

x
+
∣∣∣p(x

2

)
− p (0)

∣∣∣ ln 1

x
,

it follows that the condition (3) is weaker (2). For example, the function

p (x) = p (0) +
C1√
ln l

2x

,

satisfies to condition (3) but does not satisfy to the condition (2).
In our results, we prove sufficiency of condition (3) for sufficiently large values

of p (0) . In other words, we assert that the condition (2) is necessary and sufficient
if the value p (0) is sufficiently large (or equivalently, B is sufficiently small). One
can suppose about the case if the condition (2) satisfied but (3) does not. I
connection, we claim the following assertion that prevents this case in some sense.

Proposition 1. Let A < ∞ and the limit b := lim
x→0

∣∣p (x)− p
(
x
2

)∣∣ ln 1
x exists,

then b = 0.

Proof. Let {xn} be a sequence such that lim
n→∞

[
p(xn2 )− p(0)

]
ln 2

xn
= A.

Tending n→∞ in the identity

[p(xn)− p (0)] ln
1

xn
=
[
p(xn)− p

(xn
2

)]
ln

1

xn

+
[
p
(xn

2

)
− p (0)

](
ln

2

xn

)(
ln 1

xn

ln 2
xn

)
,

we inferA = A+ lim
n→∞

[
p(xn)− p

(
xn
2

)]
ln 1

xn
, i.e. lim

n→∞

[
p(xn)− p

(
xn
2

)]
ln 1

xn
=

0. Now using the existence of limit lim
x→0

∣∣p (x)− p
(
x
2

)∣∣ ln 1
x , we find b = 0.

Also in the Theorems 3 and 4 we prove other necessity conditions for case of
more general exponents p. In Theorem 5, we obtain some necessary and sufficient
condition on boundedness of Hardy’s operator. Note, the necessity of condition
p(0) > 1 was considered in [9].
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We refer to [3] and references therein for full description of variable exponent
Lebesgue spaces and boundedness of classical integral operators there. Also there
arise a new extension or refinement for such operators in different function spaces
(see e.g. [16], [7]).

2. Notations

As to the basic properties of spaces Lp(.) , we refer to [6]. Throughout
this paper, it is assumed that p (x) is a measurable function in (0, l) , taking its
values from the interval [1,∞) with p+ = sup {p (x) : x ∈ (0, l)} < ∞ . The
space of functions Lp(.) (0, l) is introduced as the class of measurable functions

f (x) in (0, l) which have a finite Ip(.) (f) =

l∫
0

|f |p(x) dx modular. A norm in

Lp(.) (0, l) is given in the form

‖f‖ =

{
λ > 0 : Ip(.)

(
f

λ

)
≤ 1

}
.

For 1 < p−, p+ <∞ the space Lp(.)(0, l) is a reflexive Banach space.

Denote by Λ(B) a class of measurable functions f : (0, l) → R satisfying
the condition (3). For the function 1 < p(x) < ∞ p′(x) denotes the conjugate
function of p(x), 1

p(x) + 1
p′(x) = 1. We denote by C,C1, C2, ... various positive

constants whose values may vary at each appearance. B(x, r) denotes a one-
dimensional ball with center at x and radius r > 0, i.e. B(x, r) = (x− r, x+ r).
We write u ∼ v if there exist positive constants C1, C2 such that C1u(x) ≤ v(x) ≤
C1u(x). By χE we denote the characteristic function of the set E.

3. Main Results

In this paper, following main results are obtained.

Theorem 1. Let the function p(x) be nondecreasing on some little neighborhood
of zero and measurable on (0, l) and such that 1 < p− ≤ p(x) ≤ p+ < ∞. Then
for the inequality (1) to hold it is sufficient that p ∈ Λ(B) with

B < p(0)(p(0)− 1). (4)

Theorem 2. Let 1 < p− ≤ p(x) ≤ p+ <∞ be a nondecreasing function on (0, l).
Then for the inequality (1) to hold it is necessary that p ∈ Λ(B) by some B 6=∞.
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Also the following two theorems take place on necessity condition for the
inequality (1).

Theorem 3. Let 1 < p− ≤ p(x) ≤ p+ <∞ be a nondecreasing function on (0, l).
Then for the inequality (1) to hold it is necessary that∥∥x−1∥∥

p(.);(a,l)
≤ Ca−

1
p′(a) ; a ∈ (0, l). (5)

Theorem 4. Let 1 < p− ≤ p(x) ≤ p+ < ∞ be a measurable function on (0, l).
Then for the inequality (1) to hold it is necessary that∥∥x−1∥∥

p(.);(a,l)
≤ C1a

− 1
p′a ; a ∈ (0, l), (6)

where 1
p′a

:= 1
a

a∫
0

dy
p′(y) .

Theorem 5. Let 1 < p− ≤ p(x) ≤ p+ <∞ be a nondecreasing function on (0, l).
Then for the inequality∥∥x−1Hf∥∥

L
p(.)
ε (0,l)

≤ C ‖f‖
L
p(.)
ε (0,l)

; f ≥ 0,

to hold by some ε ∈ (0, 1) it is necessary and sufficient that p ∈ Λ(B) by some
B 6=∞.

4. Proof of Main Results

Proof of Theorem 1.

Let f(x) ≥ 0 be a measurable function such that ‖f‖Lp(.)(0,l) ≤ 1. Then

Ip(.) (f) ≤ 1. (7)

In order to prove Theorem 1 we have to prove∥∥x−1Hf∥∥
Lp(.)(0,l)

≤ C1.

This inequality follows from the inequality

Ip(.)
(
x−1Hf

)
≤ C2. (8)
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By Minkowski inequality, for Lp(.) norms, we get∥∥x−1Hf∥∥
Lp(.)(0,l)

≤
∥∥x−1Hf∥∥

Lp(.)(0,δ)
+
∥∥x−1Hf∥∥

Lp(.)(δ,l)

:= i1 + i2,

where δ is such that the condition (4) provides a similar condition in (0, δ):

B < p(x) (p(x)− 1) .

The estimate near zero (i1).

By triangle property of p(.) norms, we have the inequalities

i1 ≤

∥∥∥∥∥∥∥x−
1

p(x)
− 1
ṕ(x)

∞∑
n=0

2−nx∫
2−n−1x

f(t)dt

∥∥∥∥∥∥∥
Lp(.)(0,δ)

≤
∞∑
n=0

∥∥∥∥∥∥∥x−
1

p(x)
− 1
ṕ(x)

2−nx∫
2−n−1x

f(t)dt

∥∥∥∥∥∥∥
Lp(.)(0,δ)

. (9)

Denote Bx,n = (2−n−1x, 2−nx] and px,n = inf{p(t) : t ∈ Bx,n};n = 1, 2, .... Put

ϕ(t) = t
1
ṕ(t) . Since the condition (4) holds, it is not difficult to show that the

function ϕ(t) satisfies O2 condition: ∃0 < η < 1, ϕ(ηs) < 1
2ϕ(s), s ∈ (0, δ).

Therefore [1], there exists an α = α(δ) ∈ (0, 1) such that

ϕ(s)

sα
≤ Cϕ(r)

rα
, 0 < s < r < δ. (10)

Then by (10) we have
ϕ(t)

tα
≤ Cϕ(x)

xα
, (11)

where t is a point in Bx,n, 0 < x < δ and the constant C does not depend on n.
By using inequality (11) and 2−n−1x < t < 2−nx we have the estimates

t
1
ṕ(t) = tαt

1
ṕ(t)
−α ≤ Ctαx

1
ṕ(x)
−α ≤ C2−nαx

1
ṕ(x) .

Hence
x
− 1
ṕ(x) ≤ C2−nαt

− 1
ṕ(t)

Therefore, and due to Holder’s inequality, for x ∈ B(0, δ), we get

x
− 1
p(x)
− 1
ṕ(x)

∞∑
n=0

2−nx∫
2−n−1x

f(t)dt
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≤ C2−nαx
− 1
p(x) t

− 1
ṕ(t)

2−nx∫
2−n−1x

f(t)dt

≤ C2−nαx
− 1
p(x) t

− 1
ṕ(t)

 2−nx∫
2−n−1x

f(t)p
−
x,ndt


1

p−x,n (
2−nx

) 1

(p−x,n)́ . (12)

It follows from the condition p ∈ Λ(B) that

(
2−nx

) 1

(p−x,n)́ ≤ 2
− 1

(p−x,n)́ t

1

(p−x,n)́ ≤ C1t
1
ṕ(t) , (13)

where C depends only p, δ.

Let us demonstrate the details of (13) . There exists a point y ∈ Bx,n such

that p−x,n ∼ p(y). Obviously, the point y depends on x, n. Hence t

1

(p−x,n)́ ≤ t
1

ṕ(y) .
By virtue of 2−n−1x < y < 2−nx we have t

2 < y < 2t. Therefore, and by virtue

of the condition (3), t
1

ṕ(y) ∼ t
1
ṕ(t) .

Combining (12) and (13) we get

x
− 1
p(x)
− 1
ṕ(x)

∞∑
n=0

2−nx∫
2−n−1x

f(t)dt ≤ C2−nαx
− 1
p(x)

 2−nx∫
2−n−1x

f(t)p
−
x,ndt


1

p−x,n

, (14)

where 0 < x < δ, n = 1, 2, ...and the constant C2 does not depend on n, x.

Simultaneously

2−nx∫
2−n−1x

f(t)p
−
x,ndt ≤

2−nx∫
2−n−1x

f(t)p(t)χ{f(t)≥1}dt+

2−nx∫
2−n−1x

dt ≤ 1 + 2−nδ ≤ C3.

By the last inequality and (14), we have

Ip(.);(0,δ)

x− 1
p(x)
− 1
ṕ(x)

2−nx∫
2−n−1x

f(t)dt

 ≤ C42
−nαp−

δ∫
0

x−1

 2−nx∫
2−n−1x

f(t)p
−
x,ndt


p(x)

p−x,n

dx

≤ C4C
p+

p−−1
3 2−nαp

−
δ∫
0

x−1

 2−nx∫
2−n−1x

(
f(t)p(t) + 1

)
dt

 dx,
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which, due to Fubini’s theorem, yields

≤ C4C
p+

p−−1
3 2−nαp

−
ln 2

2−nδ∫
0

 2−nx∫
2−n−1x

x−1dx

(f(t)p(t) + 1
)
dt

= C52
−nαp− ln 2

2−nδ∫
0

(
f(t)p(t) + 1

)
dt ≤ C62

−nαp− . (15)

Therefore ∥∥∥∥∥∥∥x−
1

p(x)
− 1
ṕ(x)

2−nx∫
2−n−1x

f(t)dt

∥∥∥∥∥∥∥
Lp(.)(0,δ)

≤ C2
−nαp

−

p+

By (15) and (9), we get

i1 ≤ C
∞∑
n=0

2
−nαp

−

p+ ≤ C1. (16)

The estimate of i2. We have

i2 ≤
∥∥x−1Hf∥∥

Lp(.)(δ,l)

≤

 l∫
0

f(t)dt

∥∥x−1∥∥
Lp(.)(δ,l)

, (17)

from which by virtue of Holder’s inequality, for p(x)-norms by the condition (7)
we obtain

l∫
0

f(t)dt ≤ ‖f‖Lp(.)(0,l) ‖1‖Lṕ(.)(0,l) = C1.

From (17) and the last inequality we infer

i2 ≤ C. (18)

Now using (18) and (16) from (9) derive the estimate (8).

This completes the proof of Theorem 1
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Proof of Theorems 2, 3 and 4.

Let a ∈ (0, l) be a fixed number. Put f(x) = a
− 1
p(x) χ(0,a)(x) in the

inequality (1). We have Ip(.);(0,l) (f) = 1. Then ‖f‖p(.);(0,l) ≤ 1. It follows from

the inequality (1) that Ip(.);(0,l)
(
1
xHf

)
≤ C. Therefore

1∫
a

x−p(x)

 a∫
0

a
− 1
p(y)dy

p(x)

dx ≤ C. (19)

Using Young’s inequality, we have

a

1− 1
a

a∫
0

dy
p(y)

≤
a∫
0

a
− 1
p(y)dy.

Now, using this inequality from (19) we infer

1∫
a

(a
x

)p(x)
a

− p(x)
a

a∫
0

dy
p(y)

dx ≤ C. (20)

Denote 1
pa

= 1
a

a∫
0

dy
p(y) then 1

p′a
= 1

a

a∫
0

dy
p′(y) . It follows from the inequality (20)

that
1∫
a

(
x−1

a
− 1
p′a

)p(x)
dx ≤ C. (21)

According to (21): ∥∥x−1∥∥
p(.);(a,l)

≤ C1a
− 1
p′a ,

or

∥∥x−1∥∥
p(.);(a,l)

≤ C1a

− 1
a

a∫
0

dy
p′(y)

. (22)

This proves Theorem 4.

Since p is monotone, we have 1
a

a∫
0

dy
p′(y) ≤

1
p′(a) . Then from (22) we find

∥∥x−1∥∥
p(.);(a,l)

≤ C1a
− 1
p′(a) . (23)
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This proves Theorem 3.
We conjecture that the condition (23) is a really necessary condition. But

unfortunately, we can not prove its sufficiency.
Because we shall deduce the condition (3) from (23). In this way, we have∥∥x−1∥∥

p(.);(a,l)
≥
∥∥x−1∥∥

p(.);(2a,3a)
≥ 1

3a
‖1‖p(.);(2a,3a) . (24)

Using increment of the function p, we have

1 ≥
3a∫
2a

(
1

‖1‖p(.);(2a,3a)

)p(x)
dx ≥

3a∫
2a

(
1

‖1‖p(.);(2a,3a)

)p(2a)
dx ≥

≥ a

(
1

‖1‖p(.);(2a,3a)

)p(2a)
.

This means that
‖1‖p(.);(2a,3a) ≥ a

1
p(2a) . (25)

From (25), (24) and (23) we find(
1

a

) 1
p(a)
− 1
p(2a)

≤ C1,

or [
1

p(a)
− 1

p(2a)

]
ln

1

a
≤ C2.

This implies the condition (3) by the constant B = p(0)2CC1, where C is the
constant in the inequality (1), C1 does nor depends on the p.

This completes the proof of Theorem 2.

Proof of Theorem 5.

Sufficiency. Put p1(x) = p(x)
ε . The condition p ∈ Λ(B) imply p1 ∈ Λ(Bε ) and

the condition (4) for p1 implies 0 < ε < p(0)2

B+p(0) . Choosing ε such and applying
Theorem 1 with the exponent p1, we finish the sufficiency part.

Necessity. Let the inequality (1) holds by some ε ∈ (0, 1) and the exponent

p1(x) = p(x)
ε . Then, using Theorem 2, we find p1 ∈ Λ(B), where B1 depends on

p, ε.
This completes the proof of Theorem 5.
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