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Approximating Common Fixed Points for a Finite
Family of Uniformly Quasi-Lipschitzian Mappings
in Banach Spaces
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Abstract. In this paper we study an implicit iteration scheme with errors for a finite
family of uniformly quasi-Lipschitzian mappings and give the necessary and sufficient
condition to converge to a common fixed point for the said mappings in Banach spaces
and also prove some strong convergence theorems in uniformly convex Banach spaces.
Our results extend and improve some recent results.
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1. Introduction

Let K be a nonempty subset of a Banach space E and T : K → K be a given
mapping. Let F (T ) denotes the set of fixed points of T , i.e., F (T ) = {x ∈ K :
Tx = x}.

Definition 1. A mapping T : K → K is said to be

(1) asymptotically nonexpansive if there exists a sequence {kn} in [1,∞) with
limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖ , (1)

for all x, y ∈ K and n ≥ 1.

(2) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence
{kn} in [1,∞) with limn→∞ kn = 1 such that

‖Tnx− p‖ ≤ kn ‖x− p‖ , (2)
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for all x ∈ K, p ∈ F (T ) and n ≥ 1.

(3) uniformly quasi-Lipschitzian if F (T ) 6= ∅ and there exists a constant L > 0
such that

‖Tnx− p‖ ≤ L ‖x− p‖ , (3)

for all x ∈ K, p ∈ F (T ) and n ≥ 1.

Remark 1. It is easy to see that the asymptotically nonexpansive mapping is
asymptotically quasi-nonexpansive mapping, and the latter is uniformly quasi-
Lipschitzian mapping with L = supn≥1{kn} < +∞. However, the converse
doesn’t hold in general.

In 1973, Petryshyn and Williamson [7] established a necessary and sufficient
condition for a Mann [6] iterative sequence to converge strongly to a fixed point
of a quasi-nonexpansive mapping. Subsequently, Ghosh and Debnath [2] ex-
tended the results of [7] and obtained some necessary and sufficient condition
for an Ishikawa-type iterative sequence to converge to a fixed point of a quasi-
nonexpansive mapping. In 2001, Liu in [4, 5] extended the results of Ghosh and
Debnath [2] to the more general asymptotically quasi-nonexpansive mappings.
In 2006, Shahzad and Udomene [9] gave the necessary and sufficient condition
for convergence of common fixed point of two-step modified Ishikawa iterative
sequence for two asymptotically quasi-nonexpansive mappings in real Banach
space.

In 2001, Xu and Ori [15] have introduced an implicit iteration process for
a finite family of nonexpansive mappings in a Hilbert space H. Let C be a
nonempty subset of H. Let T1, T2, . . . , TN be self-mappings of C and suppose
that F = ∩Ni=1F (Ti) 6= ∅, the set of common fixed points of Ti, i = 1, 2, . . . , N .
An implicit iteration process for a finite family of nonexpansive mappings is
defined as follows, with {tn} a real sequence in (0, 1), x0 ∈ C:

x1 = t1x0 + (1− t1)T1x1,
x2 = t2x1 + (1− t2)T2x2,

...

xN = tNxN−1 + (1− tN )TNxN ,

xN+1 = tN+1xN + (1− tN+1)T1xN+1,

...

which can be written in the following compact form

xn = tnxn−1 + (1− tn)Tnxn, n ≥ 1, (4)
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where Tk = Tk mod N . (Here the mod N function takes values in N ). And they
proved the weak convergence of the process (4).

In 2003, Sun [10] extend the process (4) to a process for a finite family of
asymptotically quasi-nonexpansive mappings, with {αn} a real sequence in (0, 1)
and an initial point x0 ∈ C which is defined as follows

x1 = α1x0 + (1− α1)T1x1,

...

xN = αNxN−1 + (1− αN )TNxN ,

xN+1 = αN+1xN + (1− αN+1)T
2
1 xN+1,

...

x2N = α2Nx2N−1 + (1− α2N )T 2
Nx2N ,

x2N+1 = α2N+1x2N + (1− α2N+1)T
3
1 x2N+1,

...

which can be written in the following compact form

xn = αnxn−1 + (1− αn)T k
i xn, n ≥ 1, (5)

where n = (k − 1)N + i, i ∈ N .

Sun [10] proved the strong convergence of the process (5) to a common fixed
point, requiring only one member T in the family {Ti : i ∈ N} to be semi-
compact. The result of Sun [10] generalized and extended the corresponding
main results of Wittmann [12] and Xu and Ori [15].

The purpose of this paper is to study an implicit iteration process with errors
which converges strongly to a common fixed point of a finite family of uniformly
quasi-Lipschitzian mappings in Banach spaces. Also we prove some strong con-
vergence theorems for said mappings in uniformly convex Banach spaces.

Let E be a Banach space, K be a nonempty closed convex subset of E, and
Ti : K → K, i ∈ {1, 2, . . . , N} = N be N uniformly quasi-Lipschitzian mappings.
Define a sequence {xn} in K as follows

x1 = α1x0 + β1T1x1 + γ1u1,

x2 = α2x1 + β2T2x2 + γ2u2,
...

xN = αNxN−1 + βNTNxN + γNuN ,



Approximating Common Fixed Points 13

xN+1 = αN+1xN + βN+1T
2
1 xN+1 + γN+1uN+1,

...

x2N = α2Nx2N−1 + β2NT
2
Nx2N + γ2Nu2N ,

x2N+1 = α2N+1x2N + β2N+1T
3
1 x2N+1 + γ2N+1u2N+1,

...

which can be written in the following compact form

xn = αnxn−1 + βnT
k
i xn + γnun, n ≥ 1, (6)

where n = (k − 1)N + i, i ∈ N and {αn}, {βn} and {γn} are real sequences in
[0, 1] such that αn + βn + γn = 1 and {un} is a bounded sequence in K.

Definition 2. (see [10]) Let K be a closed subset of a normed space E and let
T : K → K be a mapping. Then T is said to be semi-compact if for any bounded
sequence {xn} in K with ‖xn − Txn‖ → 0 as n→∞ there is a subsequence {xnk

}
of {xn} such that xnk

→ x∗ ∈ K as nk →∞.

In the sequel we shall need the following lemmas to prove our main results in
this paper.

Lemma 1. (see [11]) Let {an}, {bn} and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then limn→∞ an exists. In particular, if {an}
has a subsequence converging to zero, then limn→∞ an = 0.

Lemma 2. (see [14]) Let p > 1 and r > 0 be two fixed real numbers and E a
Banach space. Then E is uniformly convex if and only if there exists a continuous,
strictly increasing and convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ (1− λ)y‖p ≤ λ ‖x‖p + (1− λ) ‖y‖p −Wp(λ)g(‖x− y‖),

for all x, y ∈ Br(0) where 0 ≤ λ ≤ 1 and Wp(λ) = λ(1− λ)p + λp(1− λ).
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2. Main Results

In this section we prove strong convergence theorems of an implicit iteration
scheme with bounded errors for a finite family of uniformly quasi-Lipschitzian
mappings in a real Banach space.

Theorem 1. Let E be a real arbitrary Banach space, K be a nonempty closed
convex subset of E. Let Ti : K → K, i ∈ {1, 2, . . . , N} = N be N uniformly
quasi-Lipschitzian mappings. Let {xn} be the sequence defined by (6) with the
restriction

∑∞
n=1 γn < ∞ and {βn} ⊂ (s, 1 − s) for some s ∈ (0, 12). If F =

∩Ni=1F (Ti) 6= ∅, then the sequence {xn} converges strongly to a common fixed
point of {Ti : i ∈ N} if and only if lim inf

n→∞
d(xn,F) = 0, where d(x,F) denotes

the distance between x and the set F .

Proof. The necessity is obvious and it is omitted. Now we prove the suffi-
ciency. Let p ∈ F and L = max1≤i≤N Li. Using xn = αnxn−1 + βnT

k
i xn + γnun,

where n = (k − 1)N + i, it follows that

‖xn − p‖ =
∥∥∥αnxn−1 + βnT

k
i xn + γnun − p

∥∥∥
=

∥∥∥αn(xn−1 − p) + βn(T k
i xn − p) + γn(un − p)

∥∥∥
≤ αn ‖xn−1 − p‖+ βn

∥∥∥T k
i xn − p

∥∥∥+ γn ‖un − p‖

≤ αn ‖xn−1 − p‖+ βnL ‖xn − p‖+ γn ‖un − p‖
≤ αn ‖xn−1 − p‖+ βnL ‖xn − p‖+ γn ‖un − p‖
≤ αn ‖xn−1 − p‖+ (1− αn)L ‖xn − p‖

+γn ‖un − p‖
≤ αn ‖xn−1 − p‖+ (1− αnL) ‖xn − p‖

+γn ‖un − p‖ , (7)

since lim
n→∞

γn = 0, there exists a natural number n1 such that for n > n1, γn ≤ s
2 .

Hence

αn = 1− βn − γn ≥ 1− (1− s)− s

2
=
s

2
, (8)

for n > n1. Thus, we have from (7) and (8) that

αnL ‖xn − p‖ ≤ αn ‖xn−1 − p‖+ γn ‖un − p‖ ,

and

‖xn − p‖ ≤
1

L
‖xn−1 − p‖+

γn
αnL

‖un − p‖
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≤ 1

L
‖xn−1 − p‖+

2

sL
γn ‖un − p‖

≤ 1

L
‖xn−1 − p‖+

2

sL
γnM, (9)

where, M = supn≥1{‖un − p‖}, since {un} is a bounded sequence in K. This
implies that

d(xn,F) ≤ 1

L
d(xn−1,F) +

2

sL
γnM. (10)

Since
∞∑
n=1

γn <∞, it follows from Lemma 1, we know that lim
n→∞

d(xn,F) = 0.

Next, we will prove that {xn} is a Cauchy sequence. From (9) we have

‖xn+m − p‖ ≤
1

L
‖xn+m−1 − p‖+

2M

sL
γn+m

≤ 1

L

[ 1

L
‖xn+m−2 − p‖+

2M

sL
γn+m−1

]
+

2M

sL
γn+m

≤ 1

L2
‖xn+m−2 − p‖+

2M

sL2
γn+m−1

+
2M

sL
γn+m

≤ 1

L2
‖xn+m−2 − p‖+

2M

sL2

[
γn+m−1 + γn+m

]
≤ . . .

≤ . . .

≤ 1

Lm
‖xn − p‖+

2M

sLm

[
γn+m + γn+m−1

+ · · ·+ γn+1

]
≤ 1

Lm
‖xn − p‖+

2M

sLm

n+m∑
j=n+1

γj , (11)

for all p ∈ F and m,n ∈ N. Since lim
n→∞

d(xn,F) = 0, for each ε > 0, there exists

a natural number n1 such that for n ≥ n1:

d(xn,F) <
Lmε

4
and

n+m∑
j=n1+1

γj ≤
sLmε

8M
. (12)
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Thus, there exists a point q ∈ F such that d(xn1 , q) <
Lmε
4 . It follows from (11)

that for all n ≥ n1 and m ≥ 1, we have

‖xn+m − xn‖ ≤ ‖xn+m − q‖+ ‖xn − q‖

≤ 1

Lm
‖xn1 − q‖+

2M

sLm

n+m∑
j=n1+1

γj

+
1

Lm
‖xn1 − q‖+

2M

sLm

n+m∑
j=n1+1

γj

<
1

Lm
.
Lmε

4
+

2M

sLm
.
sLmε

8M

+
1

Lm
.
Lmε

4
+

2M

sLm
.
sLmε

8M
= ε. (13)

This implies that {xn} is a Cauchy sequence. Because K is a nonempty closed
convex subset of E, so there exists a p ∈ K, such that xn → p as n→∞. Finally,
we prove p ∈ F .

Since lim
n→∞

d(xn,F) = 0 and xn → p as n→∞, thus d(p,F) = 0. So, for any

ε1 > 0 there exists p1 ∈ F , such that ‖p1 − p‖ < ε1. Then we have

‖Tip− p‖ ≤ ‖Tip− p1‖+ ‖p1 − p‖
≤ L ‖p− p1‖+ ‖p1 − p‖
= (1 + L) ‖p1 − p‖
< (1 + L)ε1.

But by the arbitraryness of ε1 we know that ‖Tip− p‖ = 0, for all i = 1, 2, . . . , N ,
i.e., p ∈ F . Thus, {xn} converges strongly to a common fixed point of {Ti : i ∈
N}. This completes the proof.J

Theorem 2. Let E be a real arbitrary Banach space, K be a nonempty closed
convex subset of E. Let Ti : K → K, i ∈ {1, 2, . . . , N} = N be N uniformly
quasi-Lipschitzian mappings. Let {xn} be the sequence defined by (6) with the
restriction

∑∞
n=1 γn < ∞ and {βn} ⊂ (s, 1 − s) for some s ∈ (0, 12). If F =

∩Ni=1F (Ti) 6= ∅, then the sequence {xn} converges strongly to a common fixed
point of {Ti : i ∈ N} if and only if there exists a subsequence {xnj} of {xn}
which converges to p.

Proof. The proof of Theorem 1 follows from Lemma 1 and Theorem 1 This
completes the proof.
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We prove a lemma which plays an important role in establishing strong con-
vergence of the implicit iteration process with errors in a uniformly convex Banach
space.J

Lemma 3. Let E be a real uniformly convex Banach space, K be a nonempty
closed convex subset of E. Let Ti : K → K, i ∈ {1, 2, . . . , N} = N be N uniformly
quasi-Lipschitzian mappings. Let {xn} be the sequence defined by (6) with the
restriction

∑∞
n=1 γn <∞. If F = ∩Ni=1F (Ti) 6= ∅ and {βn} ⊂ (s, 1− s) for some

s ∈ (0, 12). Then limn→∞ ‖xn − Tlxn‖ = 0 for all l ∈ N .

Proof. Set σn =
∥∥T k

nxn − xn−1
∥∥, n = (k − 1)N + i, i ∈ N . As in the proof

of Theorem 1, limn→∞ ‖xn − q‖ exists for all q ∈ F , so {xn − q, T k
i xn − q} is a

bounded set. Hence, we can obtain a closed ball Br(0) ⊃ {xn − q, T k
i xn − q} for

some r > 0. By Lemma 1.5 and the scheme (6) we get

‖xn − q‖2 =
∥∥∥αn(xn−1 − q) + (1− αn)(T k

i xn − q) + γn(un − T k
i xn)

∥∥∥2
≤

∥∥∥αn(xn−1 − q) + (1− αn)(T k
i xn − q)

∥∥∥2 + γnK for some K > 0

≤ αn ‖xn−1 − q‖2 + (1− αn)
∥∥∥T k

i xn − q
∥∥∥2

−W2(αn)g(σn) + γnK

≤ αn ‖xn−1 − q‖2 + (1− αn)L2 ‖xn − q‖2

−W2(αn)g(σn) + γnK

≤ αn ‖xn−1 − q‖2 + (1− αnL
2) ‖xn − q‖2

−W2(αn)g(σn) + γnK. (14)

Thus, from (14) and (8) we have

‖xn − q‖2 ≤ 1

L2
‖xn−1 − q‖2 −

(1− αn)

L2
g(σn)

+
2γn
sL2

K. (15)

Therefore, as in Theorem 1, it can be shown that limn→∞ ‖xn − q‖2 = d exists.
From (15) it follows that(1− αn

L2

)
g(σn) ≤ 1

L2
‖xn−1 − q‖2 − ‖xn − q‖2 +

2γn
sL2

K

≤ 1

L2
[‖xn−1 − q‖2 − ‖xn − q‖2] +

2γn
sL2

K. (16)
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From (1− αn) ≥ (1− s/2) we have(2− s
2L2

)
g(σn) ≤ 1

L2
[‖xn−1 − q‖2 − ‖xn − q‖2] +

2γn
sL2

K. (17)

Let m be a positive integer such that m ≥ n. Then

m∑
n=1

g(σn) ≤
( 2

2− s

)[
‖x0 − q‖2 − ‖xm − q‖2

]
+

4K

s(2− s)

m∑
n=1

γn

≤
( 2

2− s

)
‖x0 − q‖2 +

4K

s(2− s)

m∑
n=1

γn. (18)

When m → ∞ in (18), we have that limn→∞ g(σn) = 0. Since g is strictly
increasing and continuous with g(0) = 0, it follows that limn→∞ σn = 0. Hence,

‖xn − xn−1‖ ≤ βn

∥∥∥T k
nxn − xn−1

∥∥∥+ γn ‖un − xn−1‖

≤ (1− αn)
∥∥∥T k

nxn − xn−1
∥∥∥+ γnQ, for some Q > 0

≤ (1− s/2)
∥∥∥T k

nxn − xn−1
∥∥∥+ γnQ, (19)

which implies that limn→∞ ‖xn − xn−1‖ = 0. That is, limn→∞ ‖xn − xn+l‖ = 0
for all l > 2N . For n > N we have

‖xn−1 − Tnxn‖ ≤
∥∥∥xn−1 − T k

nxn

∥∥∥+
∥∥∥T k

nxn − Tnxn
∥∥∥

≤ σn + L
∥∥∥T k−1

n xn − xn
∥∥∥

≤ σn + L
[ ∥∥∥T k−1

n xn − T k−1
n−Nxn−N

∥∥∥
+
∥∥∥T k−1

n−Nxn−N − x(n−N)−1

∥∥∥ ]
+L

∥∥x(n−N)−1 − xn
∥∥ . (20)

By n ≡ (n−N)(mod N) we get Tn = Tn−N . Now the above inequality becomes

‖xn−1 − Tnxn‖ ≤ σn + L2 ‖xn − xn−N‖+ Lσn−N

+L
∥∥x(n−N)−1 − xn

∥∥ , (21)

which yields that limn→∞ ‖xn−1 − Tnxn‖ = 0. Since

‖xn − Tnxn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Tnxn‖ , (22)
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so we have that

lim
n→∞

‖xn − Tnxn‖ = 0. (23)

Hence, for all l ∈ N we have

‖xn − Tn+lxn‖ ≤ ‖xn − xn+l‖+ ‖xn+l − Tn+lxn+l‖
+ ‖Tn+lxn+l − Tn+lxn‖

≤ (1 + L) ‖xn − xn+l‖+ ‖xn+l − Tn+lxn‖ , (24)

which implies that

lim
n→∞

‖xn − Tn+lxn‖ = 0 ∀ l ∈ N . (25)

Thus

lim
n→∞

‖xn − Tlxn‖ = 0 ∀ l ∈ N . (26)

Now we are in a position to prove our strong convergence theorems.J

Theorem 3. Let E be a real uniformly convex Banach space, K be a nonempty
closed convex subset of E. Let Ti : K → K, i ∈ {1, 2, . . . , N} = N be N uniformly
quasi-Lipschitzian mappings. Let {xn} be the sequence defined by (6) with the
restriction

∑∞
n=1 γn <∞. If F = ∩Ni=1F (Ti) 6= ∅ and {βn} ⊂ (s, 1− s) for some

s ∈ (0, 12). If at least one member T in {Ti : i ∈ I} is semi-compact, then the
implicitly defined sequence {xn} converges strongly to a common fixed point of
the mappings {Ti : i ∈ N}.

Proof. By Lemma 3 it follows that

lim
n→∞

‖xn − Tlxn‖ = 0 ∀ l ∈ N . (27)

Without any loss of generality assume that T1 is semi-compact. Therefore, by
(27) it follows that limn→∞ ‖xn − T1xn‖ = 0. Since T1 is semi-compact, therefore
there exists a subsequence {xnj} of {xn} such that xnj → x∗ ∈ K. Now consider

‖x∗ − Tlx∗‖ = lim
nj→∞

∥∥xnj − Tlxnj

∥∥ = 0 ∀ l ∈ I. (28)

This proves that x∗ ∈ F . As limn→∞ ‖xn − q‖ exists for all q ∈ F , therefore {xn}
converges to x∗ ∈ F , and hence the result.J
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Definition 3. (condition (∗))(see [1]) The family {Ti : i ∈ N} of N -self map-
pings on a subset K of a normed space E satisfies condition (∗) if there ex-
ists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for
all r ∈ (0,∞) such that 1

N

∑N
i=1 ‖x− Tix‖ ≥ f(d(x,F)) for all x ∈ K, where

d(x,F) = inf{‖x− p‖ : p ∈ F}.

Note that condition (∗) defined above reduces to the condition (A) [11] if we
choose Ti = T (say) for all i ∈ N .

Finally, an application of the convergence criteria established in Theorem 1
is given below to obtain yet another strong convergence result in our setting.

Theorem 4. Let E be a real uniformly convex Banach space, K be a nonempty
closed convex subset of E. Let Ti : K → K, i ∈ {1, 2, . . . , N} = N be N uni-
formly quasi-Lipschitzian mappings such that F = ∩Ni=1F (Ti) 6= ∅ and satisfy
the condition (∗). Let {xn} be the sequence defined by (6) with the restriction∑∞

n=1 γn < ∞ and {βn} ⊂ (s, 1 − s) for some s ∈ (0, 12). Then the itera-
tive sequence {xn} converges strongly to a common fixed point of the mappings
{Ti : i ∈ N}.

Proof. As in the proof of Theorem 3, (27) holds. Taking lim inf on both sides
of condition (∗) and using (27), we have that lim infn→∞ f(d(xn,F)) = 0. Since
f is a nondecreasing function with f(0) = 0 and f(r) > 0 for all r ∈ (0.∞), it
follows that lim infn→∞ d(xn,F) = 0. Now by Theorem 1, xn → p ∈ F . This
shows that {xn} converges strongly to a common fixed point of the mappings
{Ti : i ∈ N}.J

Remark 2. Theorem 1 extends and improves corresponding results of [4, 5, 8, 9,
13]. Especially Theorem 1 extends and improves Theorem 1 and 2 in [5], Theorem
1 in [4] and Theorem 3.2 in [9] in the following ways:

(1) The asymptotically quasi-nonexpansive mapping in [4], [5] and [9] is re-
placed by finite family of uniformly quasi-Lipschitzian mappings.

(2) The usual Ishikawa iteration scheme in [4], the usual modified Ishikawa it-
eration scheme with errors in [5] and the usual modified Ishikawa iteration scheme
with errors for two mappings are extended to the implicit iteration scheme with
errors for a finite family of mappings.

Remark 3. Theorem 2 extends and improves Theorem 3 in [5] and Theorem 2.3
extends and improves Theorem 3 in [4] in the following aspects:
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(1) The asymptotically quasi-nonexpansive mapping in [4] and [5] is replaced
by finite family of uniformly quasi-Lipschitzian mappings.

(2) The usual Ishikawa iteration scheme in [4] and the usual modified Ishikawa
iteration scheme with errors in [5] are extended to the implicit iteration scheme
with errors for a finite family of mappings.

Remark 4. Theorem 1 also extends the corresponding result of [8] to the case
of implicit iteration scheme with errors for a finite family of mappings and also
it extends the corresponding result of [13] to the case of more general class of
asymptotically nonexpansive mappings and implicit iteration scheme with errors
for a finite family of mappings considered in this paper.

Remark 5. Theorem 3 extends and improves Theorem 3.3 due to Sun [10] to
the case of more general class of asymptotically quasi-nonexpansive mapping and
implicit iteration process with errors and without the boundedness of K which in
turn generalizes Theorem 2 by Wittmann [12] from Hilbert spaces to uniformly
convex Banach spaces.

Remark 6. Our results also extend the corresponding results of Ud-din and Khan
[1] to the case of more general class of asymptotically quasi-nonexpansive map-
pings considered in this paper.

Example 1. Let E be the real line with the usual norm |.| and K = [0, 1]. Define
T : K → K by

T (x) = sin x, x ∈ [0, 1],

for x ∈ K. Obviously T (0) = 0, that is, 0 is a fixed point of T , that is, F (T ) =
{0}. Now we check that T is uniformly quasi-Lipschitzian mapping. In fact, if
x ∈ [0, 1] and p = 0 ∈ [0, 1], then

|T (x)− p| = |T (x)− 0| = |sin x− 0| = |sin x| ≤ |x| = |x− 0| = |x− p|,

that is

|T (x)− p| ≤ |x− p|.

Thus, T is quasi-nonexpansive. It follows that T is asymptotically quasi-nonexpansive
with the constant sequence {kn} = {1} for each n ≥ 1 and hence it is uni-
formly quasi-Lipschitzian with constant L = 1 > 0. Hence, an asymptoti-
cally quasi-nonexpansive mapping is uniformly quasi-Lipschitzian mapping with
L = supn≥1{kn} < +∞. But the converse does not hold in general.
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