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A martingale central limit theorem with random indices

Yilun Shang∗

Abstract. Let {Xi}i≥1 be a martingale difference sequence. Under some regularity conditions,

we show that N
−1/2
n (X1 + · · · + XNn

) is asymptotically normal, where {Ni}i≥1 is a sequence of
positive integer-valued random variables tending to infinity.

Key Words and Phrases: Central limit theorem, Martingale

2000 Mathematics Subject Classifications: 60F05, 60G42

1. Introduction

Martingale central limit theorems have very useful unifying properties in the sense that
many specific central limit theorems follow as special cases of martingale’s. The classical
form of the martingale central limit theorem, as presented by Brown [6] and amplified by
Dvoretzky [7], Scott [19] and McLeish [15], closely resembles the theorem of Lindeberg
and Feller [3].

Let n ≥ 1 be a fixed integer. Consider a finite sequence {X1, · · · ,Xn} of martingale
difference random variables (i.e., Xi is Fi-measurable and E(Xi|Fi−1) = 0 a.s., where
{Fi}0≤i≤n is an increasing filtration and F0 is the trivial σ-algebra). Let Sn = X1 +X2 +
· · · +Xn and v2n =

∑n
i=1

E(X2

i ). The central limit theorem established by Brown [6] and
Dvoretzky [7] states that under some Lindeberg-type condition

4n = sup
x∈R

|P (Sn/vn < x)− Φ(x)| → 0, (1)

as n → ∞, where Φ(x) = (1/
√
2π)

∫ x
−∞ e−u2/2du is the standard normal distribution

function. More recent studies on martingale cental limit theorems and their convergence
rates can be found in e.g. [12, 13, 14, 16, 21]. We refer the reader to books [5] and [9] for
more about martingale central limit theorems.

A classical martingale central limit theorem with non-random norming is the following.
See [9] for a proof.
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Theorem 1. Let {Si}i≥0 be a zero-mean martingale sequence relative to {Fi}i≥0, and let
s2i = E(X2

i |Fi−1), where Xi = Si−Si−1 and S0 = 0. Given t, let τt = inf{n :
∑n

i=1
s2i ≥ t}.

Suppose
(i) |Xi| < α < ∞ for all i,
(ii) P (

∑∞
i=1

s2i = ∞) = 1,

(iii) τt/t
P−→ 1 (in probability).

Then
Sn/

√
n

L−→ N(0, 1), (2)

as n → ∞, where “
L−→ N(0, 1)” denotes convergence in distribution to standard normal

distribution.

In this paper, we want to generalize Theorem 1 in another direction, that is, con-
sider the central limit theorem for martingale with random indices. In other words, we
investigate the sum of a random number of martingale difference sequence {Xi}. This
question is important not only in probability theory itself but in sequential analysis, ran-
dom walk problems, Monte Carlo methods, etc. Central limit problems for the sum of a
random number of independent random variables have been addressed in the pioneer work
of Anscombe [2], Rényi [18] and Blum et. al. [4]. More recent study can be found in e.g.
[8, 10, 11, 17, 20], most of which, nevertheless, deals with independent cases.

The rest of the paper is organized as follows. In Section 2, we present our martingale
cental limit theorem and in Section 3, we give the proof.

2. The Result

Theorem 2. Let {Si}i≥0 be a zero-mean martingale sequence relative to {Fi}i≥0, and let
s2i = E(X2

i |Fi−1), where Xi = Si−Si−1 and S0 = 0. Given t, let τt = inf{n :
∑n

i=1
s2i ≥ t}.

Let {Nn}n≥1 denote a sequence of positive integer-valued random variables such that

Nn

ωn

P−→ ω, (3)

as n → ∞, where {ωn}n≥1 is an arbitrary positive sequence tending to +∞ and ω is a
positive constant. Suppose

(i) |Xi| < α < ∞ for all i,
(ii) P (

∑∞
i=1

s2i = ∞) = 1,

(iii) τt/t
P−→ 1 (in probability),

(iv) there exists some k0 ≥ 0 and c > 0 such that, for any λ > 0 and n > k0, we have

P
(

max
k0<k1≤k2≤n

|Sk2 − Sk1 | ≥ λ
)

≤ c · E(Sn − Sk0)
2

λ2
, (4)

(v) Cov(Xi,Xj) ≥ 0 for all i and j.
Then

SNn
/
√

Nn
L−→ N(0, 1), (5)

as n → ∞.
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We give some remarks here. Firstly, note that the assumption (iv) is for sufficiently
large index of martingale difference sequence Xi, i.e., {Xi}i>k0 . Secondly, if {Xi}i≥1 is
independent, then (iv) automatically holds for k0 = 0 and c = 1 by using the Kolmogorov
inequality or Doob martingale inequality (see e.g. [3]). Therefore, the assumption (iv)
may be regarded as a “relaxed” Kolmogrov inequality. Thirdly, the assumption (v) says
that each pair Xs,Xt of {Xi}i≥1 is positively correlated. In view of the independent case
[4], it seems likely that the assertion of Theorem 2 still holds when ω is a positive random
variable.

3. Proof of Theorem 2

Let 0 < ε < 1/2. From (3) it follows that there exists some n0, for any n ≥ n0,

P (|Nn − ωωn| > εωωn) ≤ ε. (6)

For any x ∈ R, we have

P

(

SNn√
Nn

< x

)

=
∞
∑

n=1

P

(

Sn√
n
< x,Nn = n

)

. (7)

By (6) and (7), we have for n ≥ n0,

∣

∣

∣

∣

∣

∣

P

(

SNn√
Nn

< x

)

−
∑

|n−ωωn|≤εωωn

P

(

Sn√
n
< x,Nn = n

)

∣

∣

∣

∣

∣

∣

≤ ε. (8)

Let n1 = [ω(1 − ε)ωn] and n2 = [ω(1 + ε)ωn]. Since ωn tends to infinity, we have
n1 ≥ k0 for large enough n. Note that Sn1

+
∑

n1<k≤nXk = Sn. Then we have for
|n− ωωn| ≤ εωωn,

P

(

Sn√
n
< x,Nn = n

)

≤ P (Sn1
<

√
n2x+ Y,Nn = n), (9)

where

Y = max
n1<n≤n2

∣

∣

∣

∣

∣

∣

∑

n1<k≤n

Xk

∣

∣

∣

∣

∣

∣

. (10)

Likewise, we get

P

(

Sn√
n
< x,Nn = n

)

≥ P (Sn1
<

√
n1x− Y,Nn = n). (11)

Involving the assumption (iv) and (10), we obtain

P (Y ≥ ε
1

3

√
n1) ≤

c(n2 − n1)α
2

ε
2

3n1

≤ 4cα2ε
1

3 , (12)
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the right-hand side of which is less than 1 when ε is small enough.

Denote by E the event that Y < ε1/3
√
n1. By virtue of (8), (9) and (12), we get

P

(

SNn√
Nn

< x

)

≤ P

(

Sn1√
n1

<

√

n2

n1

x+ ε
1

3 , E

)

+ 4cα2ε
1

3 + ε ≤

≤ P

(

Sn1√
n1

<

√

1 + 2ε

1− 2ε
x+ ε

1

3

)

+ (4cα2 + 1)ε
1

3 . (13)

Similarly, from (8), (11) and (12) it follows that

P

(

SNn√
Nn

< x

)

≥ P

(

Sn1√
n1

< x− ε
1

3 , E

)

− ε. (14)

Using (14), (12) and the assumption (v), we may derive

P

(

SNn√
Nn

< x

)

≥ P

(

Sn1√
n1

< x− ε
1

3

)

P (E)− ε ≥

≥
(

1− 4cα2ε
1

3

)

P

(

Sn1√
n1

< x− ε
1

3

)

− ε, (15)

where the first inequality is due to application of the FKG inequality (see e.g. [1]).

Now by Theorem 1 we obtain

lim
n1→∞

P

(

Sn1√
n1

< x

)

= Φ(x), (16)

where Φ(x) is the standard normal distribution function as defined above. Combining
(13), (15) and (16), we then concludes the proof of Theorem 2.
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