Azerbaijan Journal of Mathematics V. 1, No 2, 2011, July ISSN 2218-6816

On piecewise isomorphism of some varieties

S.M. Gusein-Zade^{*}, A. I. Luengo, A. Melle–Hernández

Abstract. Two quasi-projective varieties are called *piecewise isomorphic* if they can be stratified into pairwise isomorphic strata. We show that the m-th symmetric power $S^m(\mathbb{C}^n)$ of the complex affine space \mathbb{C}^n is piecewise isomorphic to \mathbb{C}^{mn} and the m-th symmetric power $S^m(\mathbb{CP}^\infty)$ of the infinite dimensional complex projective space is piecewise isomorphic to the infinite dimensional Grassmannian $\mathbf{Gr}(m,\infty)$.

Key Words and Phrases: algebraic varieties, piecewise isomorphism, Grothendieck semiring of varieties

2000 Mathematics Subject Classifications: 14J99, 14M15

1. Introduction

Let $K_0(\mathcal{V}_{\mathbb{C}})$ be the Grothendieck ring of complex quasi-projective varieties. This is the Abelian group generated by the classes $[X]$ of all complex quasi-projective varieties X modulo the relations:

- 1) $[X] = [Y]$ for isomorphic X and Y;
- 2) $[X] = [Y] + [X \setminus Y]$ when Y is a Zariski closed subvariety of X.

The multiplication in $K_0(\mathcal{V}_{\mathbb{C}})$ is defined by the Cartesian product of varieties: $[X_1]\cdot [X_2] =$ $[X_1 \times X_2]$. The class $[\mathbb{A}_{\mathbb{C}}^1] \in K_0(\mathcal{V}_{\mathbb{C}})$ of the complex affine line is denoted by \mathbb{L} .

Definition 1. Quasi-projective varieties X and Y are called piecewise isomorphic if there exist decompositions $X = \coprod^s$ $i=1$ X_i and $Y = \coprod^s$ $\frac{i=1}{i}$ Y_i of X and Y into (Zariski) locally closed subsets such that X_i and Y_i are isomorphic for $i = 1, \ldots, s$.

If the varieties X and Y are piecewise isomorphic, their classes $[X]$ and $[Y]$ in the Grothendieck ring $K_0(\mathcal{V}_\mathbb{C})$ coincide. There exists the conjecture (or at least the corresponding question) that the opposite also holds: if $[X] = [Y]$, then X and Y are piecewise isomorphic (see [8, 9]).

http://www.azjm.org 91 c 2010 AZJM All rights reserved.

[∗]Corresponding author.

It is well-known that the *m*-th symmetric power $S^m \mathbb{C}^n$ of the affine space \mathbb{C}^n is birationally equivalent to \mathbb{C}^{mn} (see e.g. [3]). An explicit birational isomorphism between $S^m\mathbb{C}^n$ and \mathbb{C}^{mn} was constructed in [1]. Moreover the class $[S^m\mathbb{C}^n]$ of the variety $S^m\mathbb{C}^n$ in the Grothendieck ring $K_0(\mathcal{V}_\mathbb{C})$ of complex quasi-projective varieties is equal to the class $[\mathbb{C}^{mn}] = \mathbb{L}^{mn}$ (see e.g. [4, 6]). The conjecture formulated above means that the varieties $S^m\mathbb{C}^n$ and \mathbb{C}^{mn} are piecewise isomorphic. This is well-known for $n=1$. Moreover $S^m\mathbb{C}$ and \mathbb{C}^m are isomorphic. The fact that indeed $S^m\mathbb{C}^n$ and \mathbb{C}^{mn} are piecewise isomorphic seems to (or must) be known to specialists. Moreover proofs are essentially contained in [4] (Lemma 4.4 proved by Burt Totaro) and [6] (Statement 3). However this fact is not explicitly reflected in the literature. Here we give a proof of this statement.

In [5], it was shown that the Kapranov zeta function $\zeta_{BC*}(T)$ of the classifying stack $B\mathbb{C}^* = BGL(1)$ is equal to

$$
1+\sum_{m=1}^{\infty}\frac{\mathbb{L}^{m^2-m}}{(\mathbb{L}^m-\mathbb{L}^{m-1})(\mathbb{L}^m-\mathbb{L}^{m-2})\dots(\mathbb{L}^m-1)}T^m.
$$

Unrigorously speaking this can be interpreted as the class $[S^m B C^*]$ of the "m-th symmetric" power" of the classifying stack $B\mathbb{C}^*$ in the Grothendieck ring $K_0(\mathrm{Stck}_{\mathbb{C}})$ of algebraic stacks of finite type over $\mathbb C$ is equal to $\mathbb L^{m^2-m}$ times the class $[BGL(m)] = 1/(\mathbb L^m - \mathbb L^{m-1})(\mathbb L^m \mathbb{L}^{m-2})\dots(\mathbb{L}^m-1)$ of the classifying stack $BGL(m)$. The natural topological analogues of the classifying stacks BC^* and $BGL(m)$ are the infinite-dimensional projective space \mathbb{CP}^{∞} and the infinite Grassmannian $\mathbf{Gr}(m,\infty)$. We show that the *m*-th symmetric power $S^m \mathbb{CP}^\infty$ of \mathbb{CP}^∞ and $\mathbf{Gr}(m,\infty)$ are piecewise isomorphic in a natural sense.

Theorem 1. The varieties $S^m \mathbb{C}^n$ and \mathbb{C}^{mn} are piecewise isomorphic.

Proof. The proofs which we know in any case are not explicit, we do not know the neccesary partitions of $S^m \mathbb{C}^n$ and \mathbb{C}^{mn} . Therefore we prefer to use the language of power structure over the Grothendieck semiring $S_0(\text{Var}_{\mathbb{C}})$ of complex quasi-projective varieties invented in [6]. This language sometimes permits to substitute somewhat envolved combinatorial considerations by short computations (or even to avoid them at all, as it was made in [7]). Since the majority of statements in [6] (including those which could be used to prove Theorem 1) are formulated and proved in the Grothendieck ring $K_0(\mathcal{V}_{\mathbb{C}})$ of complex quasi-projective varieties, we repeat a part of the construction in the appropriate setting.

The Grothendieck semiring $S_0(\text{Var}_{\mathbb{C}})$ of complex quasi-projective varieties is the semigroup generated by isomorphism classes $\{X\}$ of such varieties modulo the relation $\{X\}$ = ${X - Y} + {Y}$ for a Zariski closed subvariety $Y \subset X$. The multiplication is defined by the Cartesian product of varieties: $\{X_1\}\cdot\{X_2\} = \{X_1 \times X_2\}$. Classes $\{X\}$ and $\{Y\}$ of two varieties X and Y in $S_0(\text{Var}_{\mathbb{C}})$ are equal if and only if X and Y are piecewise isomorphic. Let $\mathbb{L} \in S_0(\text{Var}_{\mathbb{C}})$ be the class of the affine line. If $\pi : E \to B$ is a Zariski locally trivial fibre bundle with fibre F, one has $\{E\} = \{F\} \cdot \{B\}$. For example if $\pi : E \to B$ is a Zariski locally trivial vector bundle of rank s, one has $\{E\} = \mathbb{L}^{s} \{B\}.$

A power structure over a semiring R is a map $(1 + T \cdot R[[T]]) \times R \to 1 + T \cdot R[[T]]$: $(A(T), m) \mapsto (A(T))^m$, which possesses the properties:

- 1. $(A(T))^0 = 1$,
- 2. $(A(T))^1 = A(T)$,
- 3. $(A(T)B(T))^m = (A(T))^m (B(T))^m$,
- 4. $(A(T))^{m+n} = (A(T))^{m} (A(T))^{n}$,
- 5. $(A(T))^{mn} = ((A(T))^{n})^{m}$,
- 6. $(1+T)^m = 1 + mT +$ terms of higher degree,
- 7. $(A(T^{\ell}))^{m} = (A(T))^{m} |_{T \mapsto T^{\ell}}, \ell \geq 1.$

In [6], there was defined a power structure over the Grothendieck semiring $S_0(\text{Var}_{\mathbb{C}})$. Namely, for $A(T) = 1 + \{A_1\} T + \{A_2\} T^2 + \dots$ and $\{M\} \in S_0(\text{Var}_\mathbb{C})$, the series $(A(T))^{\{M\}}$ is defined as

$$
1 + \sum_{k=1}^{\infty} \left(\sum_{\{k_i\} : \sum i k_i = k} \left\{ \left((\prod_i M^{k_i}) \setminus \Delta \right) \times \prod_i A_i^{k_i} \right) / \prod_i S_{k_i} \right\} \right) T^k, \tag{1}
$$

where Δ is the "large diagonal" in $M^{\Sigma k_i} = \prod M^{k_i}$ which consists of $(\sum k_i)$ -tuples of points of M with at least two coinciding ones, the group S_{k_i} of permutations on k_i elements acts by permuting corresponding k_i factors in $\prod M^{k_i} \supset (\prod M^{k_i}) \setminus \Delta$ and the spaces A_i simultaneously. The action of the group $\prod_{k_i}^{i} S_{k_i}$ on $(\prod M^{k_i})^{\binom{i}{k_i}}$ $\prod_i S_{k_i}$ on $\left(\prod_i$ i $(M^{k_i}) \setminus \Delta$ is free. The properties 1–7 are proved in [6, Theorem 1].

Special role is played by the Kapranov zeta function in the Grothendieck semiring $S_0(\text{Var}_{\mathbb{C}}): \zeta_{\{M\}}(T) := 1 + \sum_{k=1}^{\infty} \{S^k M\}T^k$, where S^kM is the k-th symmetric power M^k/S_k of the variety M. In terms of the power structure one has $\zeta_{\{M\}}(T) = (1 + T +$ $T^2 + \ldots \}^{\{M\}}$. Theorem 1 is equivalent to the fact that

$$
\zeta_{\mathbb{L}^m}(T) = (1 + \sum_{i=1}^{\infty} \mathbb{L}^{im} T^i). \tag{2}
$$

Lemma 1. Let A_i and M be complex quasi-projective varieties, $A(T) = 1 + \{A_1\}T +$ ${A_2}T^2 + \dots$ Then, for any integer $s \geq 0$,

$$
(A(\mathbb{L}^s T))^{\{M\}} = \left(A(T)^{\{M\}}\right)|_{T \mapsto \mathbb{L}^s T}.\tag{3}
$$

Proof. The coefficient at the monomial T^k in the power series $(A(T))^{\{M\}}$ is a sum of the classes of varieties of the form

$$
V = \left(\left(\prod_i M^{k_i} \right) \setminus \Delta \right) \times \prod_i A_i^{k_i} \right) / \prod_i S_{k_i},
$$

with $\sum i k_i = k$. The corresponding summand $\{\tilde{V}\}\$ in the coefficient at the monomial T^k in the power series $(A(\mathbb{L}^s T))^{\{M\}}$ has the form

$$
\widetilde{V} = \left(\left(\prod_i M^{k_i} \right) \setminus \Delta \right) \times \prod_i (\mathbb{L}^{si} \times A_i)^{k_i} \right) / \prod_i S_{k_i}.
$$

The natural map $\tilde{V} \to V$ is a Zariski locally trivial vector bundle of rank sk (see e.g. [10, Section 7, Proposition 7]). This implies that $\{ \widetilde{V} \} = \mathbb{L}^{sk} \cdot \{ V \}$.

One has $\zeta_{\mathbb{L}}(T) = (1 + \mathbb{L}T + \mathbb{L}^2T^2 + \ldots)$. For all A_i being points, i.e. $\{A_i\} = 1$, one gets

$$
\zeta_{\mathbb{L}{M}}(T) = (1 + T + T^2 + ...)^{\mathbb{L}{M}} = ((1 + T + T^2 + ...)^{\mathbb{L}{M}})^{\{M\}}
$$

=
$$
(1 + \mathbb{L}T + \mathbb{L}^2T^2 + ...)^{\{M\}}.
$$

Equation (3) implies that

$$
\zeta_{\mathbb{L}\{M\}}(T) = (1 + \mathbb{L}T + \mathbb{L}^2T^2 + \ldots)^{\{M\}} = \zeta_{\{M\}}(\mathbb{L}T).
$$

Assuming (2) holds for $m < m_0$ and applying the equation above to $m = m_0 - 1$ one gets

$$
\zeta_{\mathbb{L}^{m_0}}(T) = \zeta_{\mathbb{L}^{m_0-1}}(\mathbb{L}T) = (1 + \mathbb{L}^{m_0-1}T + \mathbb{L}^{2(m_0-1)}T^2 + \ldots)|_{T \mapsto \mathbb{L}T}
$$

= $(1 + \mathbb{L}^{m_0}T + \mathbb{L}^{2m_0}T^2 + \ldots).$

This gives the proof.

Let $\mathbb{CP}^{\infty} = \lim_{\Delta \to 0} \mathbb{CP}^N$ be the infinite dimensional projective space and let $\mathbf{Gr}(m, \infty) =$ $\lim_{\Delta t \to 0}$ Gr(m, N) be the infinite dimensional Grassmannian. (In the both cases the inductive limit is with respect to the natural sequence of inclusions. The spaces \mathbb{CP}^{∞} and $\mathbf{Gr}(m,\infty)$ are, in the topological sense, classifying spaces for the groups $\mathbb{C}^* = GL(1;\mathbb{C})$ and $GL(m;\mathbb{C})$ respectively.) The symmetric power $S^m \mathbb{CP}^\infty$ is the inductive limit of the quasi-projective varieties $S^m \mathbb{CP}^N$. For a sequence $X_1 \subset X_2 \subset X_3 \subset \ldots$ of quasi-projective varieties, let $X = \varinjlim X_i (= \bigcup_i X_i)$ be its (inductive) limit. A partition of the space X compatible with the filtration $\{X_i\}$ is a representation of X as a disjoint union $\coprod Z_j$ of (not more than) j countably many quasi-projective varieties Z_j such that each X_i is the union of a subset of the strata Z_j and each Z_j is a Zariski locally closed subset in the corresponding X_i .

Theorem 2. The spaces $S^m \mathbb{CP}^\infty$ and $\mathbf{Gr}(m,\infty)$ are piecewise isomorphic in the sense that there exist partitions $S^m \mathbb{CP}^\infty = \coprod$ j U_j and $\mathbf{Gr}(m,\infty) = \coprod$ j V_j into pairwise isomorphic quasi-projective varieties U_j and V_j ($U_j \cong V_j$) compatible with the filtrations $\{S^m\mathbb{CP}^N\}_N$ and $\{G\mathbf{r}(m,N)\}_N$.

Proof. The natural partition of $\mathbf{Gr}(m, N)$ consists of the Schubert cells corresponding to the flag $\{0\} \subset \mathbb{C}^1 \subset \mathbb{C}^2 \subset \ldots$ (see e.g [2, §5.4]). Each Schubert cell is a locally closed subvariety of $\mathbf{Gr}(m, N)$ isomorphic to the complex affine space of certain dimension. This partition is compatible with the inclusion $\mathbf{Gr}(m, N) \subset \mathbf{Gr}(m, N+1)$ and therefore gives a partition of $\mathbf{Gr}(m,\infty)$. The number of cells of dimension n in $\mathbf{Gr}(m,\infty)$ is equal to the number of partitions of n into summands not exceeding m .

Since
$$
\mathbb{CP}^{\infty} = \mathbb{C}^0 \coprod \mathbb{C}^1 \coprod \mathbb{C}^2 \coprod \dots
$$
 and $S^p(A \coprod B) = \coprod_{i=0}^p S^i A \times S^{p-i}B$, one has
\n
$$
S^m \mathbb{CP}^{\infty} = \coprod_{\{i_0, i_1, i_2, \dots\} : i_0 + i_1 + i_2 + \dots = m} \prod_j S^{i_j} \mathbb{C}^j = \coprod_{\{i_1, i_2, \dots\} : i_1 + i_2 + \dots \le m} \prod_j S^{i_j} \mathbb{C}^j,
$$

where i_j are non-negative integers. This partition is compatible with the natural filtration $\{ \mathbb{CP}^0 \} \subset \mathbb{CP}^1 \subset \mathbb{CP}^2 \subset \ldots$ The number of parts of dimension *n* is equal to the number of sequences $\{i_1, i_2, \ldots\}$ such that $\sum i_j \leq m$, $\sum i_j = n$. Thus, it coincides with the j j number of partitions of n into not more than m summands and is equal to the number of n-dimensional Schubert cells in the partition of $\mathbf{Gr}(m,\infty)$. Due to Proposition 1 each part $\prod S^{i_j} \mathbb{C}^j$ is piecewise isomorphic to the complex affine space of the same dimension. j This concludes the proof.

It would be interesting to find explicit piecewise isomorphisms between the spaces in Theorems 1 and 2.

References

- [1] V.M. Buchstaber and E.G. Rees. Manifolds of polysymmetric polynomials. classical problems, contemporary applications. In: Proceedings of the Conference devoted to the 10th anniversary of RFBR, Moscow: Fizmatlit, pages 129–145, 2004.
- [2] A.T. Fomenko and D.B. Fuks. A course in homotopic topology. Nauka,Russian, Moscow, 1989.
- [3] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Birkhauser, Boston, 1994.
- [4] L. Göttsche. On the motive of the hilbert scheme of points on a surface. *Math. Res.* Lett., $8(5-6):613-627$, 2001.
- [5] S.M. Gusein-Zade, I. Luengo, and A. Melle-Hernández. On the pre-lambda ring structure on the grothendieck ring of stacksand on the power structures over it. $ArXiv$; 1008.5063.
- [6] S.M. Gusein-Zade, I. Luengo, and A. Melle-Hern´andez. A power structure over the grothendieck ring of varieties. Math. Res. Lett., 11(1):49–57, 2004.
- [7] S.M. Gusein-Zade, I. Luengo, and A. Melle-Hern´andez. Power structure over the grothendieck ring of varieties and generating series of hilbert schemes of points. Michigan Math. J., 54:353–359, 2006.
- [8] M. Larsen and V. Lunts. Motivic measures and stable birational geometry. Moscow Math. J., 3(1):85–95, 2003.
- [9] Q. Liu and J. Sebag. The grothendieck ring of varieties and piecewise isomorphisms. Mathematische Zeitschrift, 265(2):321–342, 2010.
- [10] D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, Bombay, No. 5, London: Oxford University Press, 1970.

S.M. Gusein-Zade

State University, Faculty of Mathematics and Mechanics, Moscow, GSP-1, 119991, Russia.

E-mail: alijon1983@mail.ru

I. Luengo

University Complutense de Madrid, Dept. of Algebra, Madrid, 28040, Spain $E-mail:$ iluengo@mat.ucm.es

A. Melle–Hernández Instituto de Ciencias Matemáticas Complutense-CSIC-Autónoma-Carlos III, Spain. $E-mail:$ amelle@mat.ucm.es

Received 10 February 2011 Published 17 March 2011