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The relation between different norms of algebraic poly-

nomials in the regions of complex plane
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Abstract. In this work, we study Bernstein-Zigmund type and Nikolskii type estimations for the
arbitrary algebraic polynomial in regions of the complex plane.

Key Words and Phrases: Algebraic polynomial, Quasiconformal mapping, Quasicircle

2000 Mathematics Subject Classifications: 30A10, 30C10, 41A17

1. Introduction and Main results

Let G be a finite region, with 0 ∈ G , bounded by a Jordan curve L := ∂G, and let
X and Y be norm spaces of functions defined in G and let ℘n denote the set of arbitrary
algebraic polynomials Pn(z), degPn = n, n = 0, 1, 2, ...,. Our goal is to find the estimate

‖P (k)
n ‖X ≤ A(k, n,G)‖Pn‖Y ,

for all polynomials Pn ∈ ℘n and all k = 0, 1, 2, ..., where A(k, n,G) is a constant depending
on k, n and G in general.

The comparison of norms of polynomials with itself and itself with derivation of poly-
nomials have been studied by many mathematicians (see, for example, [1], [2], [3], [4], [5],
[10], [12]).

Let σ be the two-dimensional Lebesque measure and h (z) is a weight function in G.
Let Ap(h,G), p > 0, denote the class of functions f which are analytic in G and satisfy
the condition

‖f‖Ap
:= ‖f‖Ap(h,G) :=

(
∫∫

G
h(z) |f(z)|p dσz

)1/p

<∞,

and Ap(1, G) ≡ Ap(G).
Let w = ϕ(z) (w = Φ(z)) be the conformal mapping of G (Ω := CG) onto the

unit disc B := B(0, 1) := {w : |w| < 1} (∆ := ∆(0, 1) := {z : |z| > 1}) normalized by
ϕ(0) = 0, ϕ

′

(0) > 0 (Φ(∞) = ∞, Φ
′

(∞) > 0) and let ψ := ϕ−1(Ψ := Φ−1).
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Definition 1. [13] A bounded Jordan region G is called a k -quasidisk, 0 ≤ k < 1, if any
conformal mapping ψ can be extended to a K -quasiconformal, K = 1+k

1−k , homeomorphizm

of the plane C on the C. In that case the curve L := ∂G is called a K -quasicircle. The
region G (curve L ) is called a quasidisk (quasicircle), if it is k -quasidisk ( k -quasicircle)
with some 0 ≤ k < 1.

Throughout this paper, c, c1, c2, ... are positive constants (in general, different in dif-
ferent relations), which depend on G in general.

Theorem 1. Let G be a k -quasidisk, 0 ≤ k < 1. Then for arbitrary Pn ∈ ℘n and any
m = 0, 1, 2, . . . we have

‖P (m)
n ‖C(G) ≤ c1n

(m+ 2
p
)(1+k)‖Pn‖Ap(G), p > 1. (1.1)

Theorem 2. Let G be a k -quasidisk, 0 ≤ k < 1. Then for arbitrary Pn ∈ ℘n and any
m = 0, 1, 2, . . .we have

‖P (m)
n ‖Ap(G) ≤ c2n

[

(m+1)− 2
p

]

(1+k)
‖Pn‖A2(G), p > 2. (1.2)

Theorem 3. Let G be a k -quasidisk, 0 ≤ k < 1. Then for arbitrary Pn ∈ ℘n and
any 1 < p ≤ q <∞ we have

‖Pn‖Aq(G) ≤ c3n
2( 1

p
− 1

q
)(1+k)

‖Pn‖Ap(G). (1.3)

Theorems 1, 2 and 3 are fine, since we can know coefficients quasiconformality of taking
regions. Note that the result which is similar to the (3) was obtained in [14] in the case of
1 < p < q ≤ ∞ . But, the dependence on n and k of the right side of the inequality
was not clearly expressed like (3).

Now, we define the class of regions under functional conditions, such that the coeffi-
cients quasiconformality of this regions are hard to define, but we can define these regions
in according to other parameters.

Definition 2. We say that G ∈ Qα, 0 < α ≤ 1 , if

a) L is a quasicircle,

b) Φ ∈ Lipα, z ∈ Ω.

Theorem 4. Let G ∈ Qα. Then, for arbitrary Pn ∈ ℘n and any m = 0, 1, 2, . . .we have

‖P (m)
n ‖C(G) ≤ c4

{

nδ(m+ 2
p
), α < 1

2

n
1
α
(m+ 2

p
)
, α ≥ 1

2

‖Pn‖Ap(G), p > 1, (1.4)

where δ = δ(G), 1 ≤ δ ≤ 2, is a certain number.
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Theorem 5. Let G ∈ Qα. Then, for arbitrary Pn ∈ ℘n and any m = 0, 1, 2, . . .we have

‖P (m)
n ‖A2(G) ≤ c5

{

nδ·m, α < 1
2

n
m
α , α ≥ 1

2

‖Pn‖A2(G), (1.5)

where δ = δ(G), 1 ≤ δ ≤ 2, is a certain number.

Theorem 6. Let G ∈ Qα. Then, for arbitrary Pn ∈ ℘n and any 1 < p ≤ q <∞ we have

‖Pn‖Aq(G) ≤ c6

{

n2δ(
1
p
− 1

q
), α < 1

2

n
2
α
( 1
p
− 1

q
)
, α ≥ 1

2

‖Pn‖Ap(G), (1.6)

where δ = δ(G), 1 ≤ δ ≤ 2, is a certain number.

2. Some auxiliary results

Throughout this paper, we denote that “a ≺ b“ and “a � b“ are equivalent to a ≤ b
and c1a ≤ b ≤ c2a for some constants c, c1, c2 respectively.

Let G is a quasidisk. Then there exists a quasiconformal reflection y(.) across L such
that y(G) = Ω, y(Ω) = G and y(.) fixes the points of L. The quasiconformal reflection
y(.) is such that it satisfies the following condition [7], [9, p.26];

|y(ζ)− z| � |ζ − z| , z ∈ L, ε < |ζ| <
1

ε
,

∣

∣

∣
yζ

∣

∣

∣
� |yζ | � 1, ε < |ζ| <

1

ε
,

∣

∣

∣yζ

∣

∣

∣ � |y(ζ)|2 , |ζ| < ε,
∣

∣

∣yζ

∣

∣

∣ � |ζ|−2 , |ζ| >
1

ε
. (2.1)

For t > 0 , let Lt := {z : |ϕ(z)| = t, if t < 1, |Φ(z)| = t, if t > 1} , Gt := intLt, Ωt :=
extLt.

For R > 1, we denote L∗ := y(LR), G
∗ := intL∗, Ω∗ := extL∗; w = ΦR(z) be the

conformal mapping of Ω∗ onto the ∆ normalized by ΦR(∞) = ∞, Φ
′

R(∞) > 0; ΨR := Φ−1
R ;

For t > 1, let L∗
t := {z : |ΦR(z)| = t} , G∗

t := intL∗
t , Ω

∗
t := extL∗

t .

According to [8], for all z ∈ L∗ and t ∈ L such that |z − t| = d(z, L) we have

d(z, L) � d(t, LR) � d(z, L∗
R),

|ΦR(z)| ≤ |ΦR(t)| ≤ 1 + c(R − 1). (2.2)

Lemma 1. [6] Let G be a quasidisk, z1 ∈ L, z2, z3 ∈ Ω ∩ {z : |z − z1| ≺ d(z1, Lr0)};
wj = Φ(zj), j = 1, 2, 3. Then,

a) The statements |z1 − z2| ≺ |z1 − z3| and |w1 −w2| ≺ |w1 − w3| are equivalent. So
are |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| .
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b) If |z1 − z2| ≺ |z1 − z3| , then

∣

∣

∣

∣

w1 − w3

w1 − w2

∣

∣

∣

∣

c1

≺

∣

∣

∣

∣

z1 − z3
z1 − z2

∣

∣

∣

∣

≺

∣

∣

∣

∣

w1 − w3

w1 − w2

∣

∣

∣

∣

c2

,

where 0 < r0 < 1 is a constant, depending on G and k.

Lemma 2. Let G be a k -quasidisk for some 0 ≤ k < 1. Then

|Ψ(w1)−Ψ(w2)| � |w1 − w2|
1+k ,

for all w1, w2 ∈ Ω
′
.

This fact follows from an appropriate result for the mapping f ∈
∑

(k)[13, p.287] and
estimation for the Ψ

′

[9, Th.2.8].
Let {zj}

m
j=1 be a fixed system of the points on L and the weight function h (z) defined

as the following:

h (z) = h0 (z)

m
∏

j=1

|z − zj |
γj , (2.3)

where γj > −2 for j = 1,m, and h0 (z) is uniformly separated from zero in G:

h0 (z) ≥ c > 0, ∀z ∈ G.

Lemma 3. [2] Let G be a quasidisk and Pn(z), degPn ≤ n, n = 1, 2, ..., is an arbitrary
polynomial and weight function h(z) satisfies the condition(2.3). Then for any R > 1,
p > 0 and n = 1, 2, ...

‖Pn‖Ap(h,G1+c(R−1))
≤ c3R

n+ 1
p ‖Pn‖Ap(h,G) , (2.4)

where c, c3 are independent of n and G.

In particular, in case of h(z) ≡ 1, we get

‖Pn‖Ap(G1+c(R−1))
≤ c4R

n+ 1
p ‖Pn‖Ap(G) . (2.5)

This result is the integral analog of the familiar lemma of Bernstein-Walsh[15, p.101]
for the case Ap(G) -norm and, shows that the order Ap(G) -norm of arbitrary polynomials
is taken from the region G and G1+1/n which are both identical.

Lemma 4. Let G be a quasidisk and Pn(z), degPn ≤ n, n = 1, 2, ..., is an arbitrary
polynomial. Then for any R = 1 + c

n , n = 1, 2, ..., and m = 0, 1, 2, ..., there exists a
c1 := c1(G, c) > 0 such that

∥

∥

∥P (m)
n

∥

∥

∥

C(G)
≤ c1

∥

∥

∥P (m)
n

∥

∥

∥

C(G∗)
. (2.6)
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Proof. For any fixed number m = 0, 1, 2, ..., m ≤ n, we put

F (z) := F (z,m, n,R) :=
P

(m)
n (z)

[ΦR(z)]
n+1−m , z ∈ Ω∗.

Obviously, the function F (z) is analytic in Ω∗, continuous on Ω∗ , F (∞) = 0 and |F (z)| =
∣

∣

∣P
(m)
n (z)

∣

∣

∣ for z ∈ L∗. Then, the maximum modulus principle yields

|F (z)| ≤ max
z∈L∗

|F (z)| = max
z∈L∗

∣

∣

∣
P (m)
n (z)

∣

∣

∣
.

So,
∣

∣

∣
P (m)
n (z)

∣

∣

∣
≤ |ΦR(z)|

n+1−m
∥

∥

∥
P (m)
n

∥

∥

∥

C(G∗)
, z ∈ Ω∗.

According to (2.2), for the z ∈ L, we get

|ΦR(z)|
n+1−m ≤ [1 + c(R− 1)]n+1−m =

[

1 +
c

n

]n+1−m
≺ 1.

Since z ∈ L is arbitrary, then
∥

∥

∥
P (m)
n

∥

∥

∥

C(G)
≺

∥

∥

∥
P (m)
n

∥

∥

∥

C(G∗)
. J

3. Proof of Theorems

3.1. Proof of Theorems 1 and 4

Proof. As L is a quasicircle, then for arbitrary z ∈ G∗, we can write the following
integral representation for Pn(z)[9]:

P (m)
n (z) = −

(m+ 1)!

π

∫∫

G

Pn(ζ)yζ(ζ)

(y(ζ)− z)m+2
dσζ , z ∈ G∗.

Applying the Minkowski inequality, we have

|P (m)
n (z)| ≤

(m+ 1)!

π





∫∫

G

|Pn(ζ)|
pdσζ





1
p

×

×





∫∫

G

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ





1
q

≺

≺





∫∫

G

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ





1
q

‖Pn‖Ap(G) ,
1

p
+

1

q
= 1. (3.1)



The relation between different norms... 75

Let us set

Jq(z) :=

∫∫

G

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ .

For ε > 0, we put Uε(z) := {ζ : |ζ − z| < ε}; without loss of generality, we may take
Uε := Uε(0) ⊂ G∗. For arbitrary fixed z ∈ L∗, we have

Jq(z) =

∫∫

Uε

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ +

+

∫∫

G\Uε

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ =

= : J1(z) + J2(z). (3.2)

Let us estimate J1(z). According to (2.1), |yζ̄ | � |y(ζ)|2 for all ζ ∈ Uε, because of
|ζ − z| ≥ ε, |y(ζ)− z| � |y(ζ)| for z ∈ L∗ and ζ ∈ Uε, then we can find

J1(z) =

∫∫

Uε

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ �

�

∫∫

Uε

|y(ζ)|2q

|y(ζ)|q(m+2)
dσζ =

=

∫∫

Uε

dσζ
|y(ζ)|qm

≺ 1. (3.3)

For the estimation of J2(z) , first of all, we note that the Jacobian £y := |yζ |
2 −

∣

∣

∣
yζ

∣

∣

∣

2
of

the reflection y(ζ) satisfies the following inequality

∣

∣

∣yζ

∣

∣

∣ =







£y

∣

∣

∣
yζ

∣

∣

∣

2

|yζ |
2 −

∣

∣

∣yζ

∣

∣

∣

2







1
2

=









£y
(

|yζ |
2 /

∣

∣

∣yζ

∣

∣

∣

2
)

− 1









1
2

≤

≤

(

χ2

1− χ2

)
1
2

|£y|
1
2 ≺ |£y|

1
2 ,

where χ := K1−1
K1+1 . Consequently, |£y| � |yζ̄ |

2. Then, after carrying out the change of
variable we obtain for the J2(z):

J2(z) ≺

∫∫

G\Uε

|yζ̄ |
q

|y(ζ)− z|q(m+2)
dσζ ≺
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≺

∫∫

y(G\Uε)

dσζ

|ζ − z|q(m+2)
≺

≺

∫∫

|ζ−z|≥d(z,L)

dσζ

|ζ − z|q(m+2)

≺ (d(z, L))2−q(m+2) . (3.4)

Jq(z) ≺ 1 + (d(z, LR))
2−q(m+2) ≺

≺ (d(z, L))2−q(m+2) , ∀z ∈ L∗. (3.5)

Using (2.2), from (3.1),( 3.2)-(3.5) for all z ∈ L∗ and t ∈ L such that |z − t| = d(z, L), we
obtain

|P (m)
n (z)| ≺ d

−(m+ 2
p
)
(t, LR) ‖Pn‖Ap(G) , ∀z ∈ L∗. (3.6)

If G ∈ Qα, according to [9] and [11] we have

d (t, LR) � (R− 1)µ � n−µ, (3.7)

where µ = 1
α , if α ≥ 1

2 and µ = δ, if α < 1
2 , δ = δ(α,G), 1 ≤ δ ≤ 2, is a certain number.

If G is a quasidisk, taking Lemma 2 into account, we get

d(z, LR) = |ζ − z| = |Ψ(τ)−Ψ(w)| ≥ |τ − w|1+k � n−(1+k). (3.8)

Consequently, according to Lemma 4, we obtain

‖P (m)
n ‖C(G) ≺

{

n
δ(m+ 2

p
)
, α < 1

2

n
1
α
(m+ 2

p
), α ≥ 1

2

‖Pn‖Ap(G), p > 1,

and

‖P (m)
n ‖C(G) ≺ n(1+k)·(m+ 2

p
)‖Pn‖Ap(G), p > 1.

The proof or theorems 1 and 4 is completed.J

3.2. Proof of Theorem 5

Proof. Since L is a quasicircle, we conclude that any LR, R = 1 + cn−1 is also a
quasicircle. Therefore, we can construct a K1-quasiconformal reflection yR, yR(0) = ∞
across LR that satisfies conditions (2.1) described for yR(ζ). By using yR(ζ) constructed
in this way, we can write the following integral representations for Pn(z)

P (m)
n (z) = −

(m+ 1)!

π

∫∫

GR

Pn(ζ)yR,ζ(ζ)

(yR(ζ)− z)m+2
dσζ , z ∈ G. (3.9)
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Applying the Hölder inequality, we get

|P (m)
n (z)|2 ≤

[

(m+ 1)!

π

]2 ∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ

×

∫∫

GR

|Pn(ζ)|
2

|yR(ζ)− z|m+2
dσζ .

After integration from over a region G, we have

∫∫

G

|P (m)
n (z)|2dσz ≤

[

(m+ 1)!

π

]2

×

×

∫∫

G







∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ ·

∫∫

GR

|Pn(ζ)|
2

|yR(ζ)− z|m+2
dσζ






dσz ≤

≤ sup
z∈G

∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ ×

× sup
ζ∈ GR

∫∫

G

dσz
|yR(ζ)− z|m+2

× ‖Pn‖
2
A2(GR) =:

= : AR(z) ×BR(z)× ‖Pn‖
2
A2(GR). (3.10)

Let us estimate

AR(z) := sup
z∈G

∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ . (3.11)

For ε > 0, Uε(z) := {ζ : |ζ − z| < ε}, we can assume without loss of generality that
Uε := Uε(0) ⊂ G∗. For arbitrary fixed z ∈ L, we have

∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ =

∫∫

Uε

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ +

+

∫∫

GR\Uε

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ =:

= : J1 + J2. (3.12)

Let us estimate J1. According to (2.1), |yR,ζ̄ | � |yR(ζ)|
2 for all ζ ∈ Uε, because of

|ζ − z| ≥ ε, |yR(ζ)− z| � |yR(ζ)| for z ∈ L and ζ ∈ Uε, then we can find

J1 =

∫∫

Uε

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ �
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�

∫∫

Uε

|yR(ζ)|
4

|yR(ζ)|m+2
dσζ =

=

∫∫

Uε

dσζ
|yR(ζ)|m+2

≺ 1. (3.13)

For the estimation of J2 , first of all, we note that the Jacobian £yR := |yR,ζ |
2 −

∣

∣

∣
yR,ζ

∣

∣

∣

2
of

the reflection yR(ζ) satisfies the following inequality

∣

∣

∣
yR,ζ

∣

∣

∣
=







£yR

∣

∣

∣yR,ζ

∣

∣

∣

2

|yR,ζ |
2 −

∣

∣

∣
yR,ζ

∣

∣

∣

2







1
2

=

=









£yR
(

|yR,ζ |
2 /

∣

∣

∣
yR,ζ

∣

∣

∣

2
)

− 1









1
2

≤

≤

(

χ2

1− χ2

)
1
2

|£yR |
1
2 ≺ |£yR |

1
2 ,

where χ := K1−1
K1+1 . Consequently, |£yR | � |yR,ζ̄ |

2. Then, analogous to the estimate for J1,
after carrying out the change of variable, we obtain for the J2:

J2 ≺

∫∫

GR\Uε

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ ≺

≺

∫∫

yR(GR\Uε)

dσζ
|ζ − z|m+2

≺

≺

∫∫

|ζ−z|≥d(z,LR)

dσζ
|ζ − z|m+2

≺

≺ (d(z, LR))
−m. (3.14)

AR(z) ≺ 1 + (d(z, LR))
−m ≺ (d(z, LR))

−m, ∀z ∈ L. (3.15)

Next, analogous to the estimate AR(z), for the BR(z), we get

BR(z) ≺ (d(z, LR))
−m, ∀z ∈ L. (3.16)

From (3.10), ( 3.15), and (3.16), we obtain
∫∫

G

|P (m)
n (z)|2dσz ≺ (d(z, LR))

−2m‖Pn‖
2
A2(GR), ∀z ∈ L.
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Since G ∈ Qα, according to [9] and [11], we have

d (z, LR) � (R− 1)µ � n−µ,

where µ = 1
α , if α ≥ 1

2 and µ = δ, if α < 1
2 , δ = δ(α,G), 1 ≤ δ ≤ 2, is a certain number.

Consequently, according to Lemma 3, we obtain

‖P (m)
n ‖A2(G) ≺ nµ·m‖Pn‖A2(G),

and we completed the proof.J

3.3. Proof of Theorem 2

Proof. In a similar way, analogous to (3.9), we can write the following integral repre-
sentation

P (m)
n (z) = −

(m+ 1)!

π

∫∫

GR

Pn(ζ)yR,ζ̄(ζ)

(yR(ζ)− z)m+2
dσζ , z ∈ G.

Applying the Hölder inequality, we get

|P (m)
n (z)| ≤

(m+ 1)!

π







∫∫

GR

|Pn(ζ)|
2

|yR(ζ)− z|m+2
dσζ







1/2

×

×







∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ







1/2

.

Then

∫∫

G

|P (m)
n (z)|pdσz ≤

{

(m+ 1)!

π

}p

×

×

∫∫

G







∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ







p/2 





∫∫

GR

|Pn(ζ)|
2

|yR(ζ)− z|m+2
dσζ







p/2

dσz ≤

≤

{

(m+ 1)!

π

}p

sup
z∈G











∫∫

GR

|yR,ζ̄ |
2

|yR(ζ)− z|m+2
dσζ











p/2

×

×

∫∫

G















∫∫

GR

|Pn(ζ)|
2

|yR(ζ)− z|m+2
dσζ







p/2








dσz =: A1
R(z)×B1

R(z). (3.17)
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Estimations for A1
R(z), we can find analogous estimation AR(z). In this case, for z ∈ L

we get

A1
R(z) = sup

ζ∈G











∫∫

GR

|yR,ζ̄ |
pdσz

|yR(ζ)− z|m+2











p/2

≺ (d(z, LR))
−mp

2 .

Applying the generalized Minkowski inequality for the estimation B1
R(z) for z ∈ L, we

get

B1
R(z) =

∫∫

G















∫∫

GR

|Pn(ζ)|
2

|yR(ζ)− z|m+2
dσζ







p/2








dσz ≤

≤







∫∫

GR

|Pn(ζ)|
2





∫∫

G

dσz

|yR(ζ)− z|
m+2

2
p





2/p

dσζ







p/2

≤

≤ sup
ζ∈GR







∫∫

G

dσz

|yR(ζ)− z|
m+2

2
p







× ‖Pn‖
p
A2(GR) ≺

≺ (d(z, LR))
2−m+2

2
p × ‖Pn‖

p
A2(GR) .

Then, from (3.17) we have
∫∫

G

|P (m)
n (z)|pdσz ≺ (d(z, LR))

2−(m+1)p × ‖Pn‖
p
A2(GR)

. (3.18)

Let ζ ∈ LR such that d(z, LR) = |ζ − z| , z ∈ L. Taking Lemma 2 into account, we get

d(z, LR) = |ζ − z| = |Ψ(τ)−Ψ(w)| ≥ |τ − w|1+k � n−(1+k). (3.19)

According to Lemma 3, from (3.17), (3.18) and (3.19), we complete the proof.

‖P (m)
n ‖Ap(G) ≺ n

(1+k)
[

(m+1)− 2
p

]

‖Pn‖A2(G). J

3.4. Proof of Theorems 6 and 3

Proof. According to Lemma 4 and (3.6), in case of m = 0, we obtain

‖Pn‖Aq(G) =

(∫∫

G
|Pn(z)|

q dσz

)1/q

=

=

(∫∫

G
|Pn(z)|

q−p |Pn(z)|
p dσz

)1/q

≤
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≤ max
z∈G

|Pn(z)|
1− p

q

(
∫∫

G
|Pn(z)|

p dσz

)1/q

≺

≺ max
z∈G∗

|Pn(z)|
1− p

q ‖Pn‖
p

q

Aq(G) ≺

≺ d
2( 1

q
− 1

p
)
(t, LR) ‖Pn‖Ap(G) .

Thus, using (3.7) and (3.8) respectively, we completed the proofs.J

We note that the Theorems 1 -6 are sharp. For the Theorems 4 and 1, this is easy to

see on the example Pn(z) =
n
∑

j=0
(j + 1)zj , G = B, m = 0, p = 2 and α = 1.(Theorem 4)

and k = 0 (Theorem 1). In this case

‖Pn‖C(G) =
(n+ 1)(n + 2)

2
; ‖Pn‖A2(G) =

√

π(n+ 1)(n + 2)

2
.

Then, we have

‖Pn‖C(G) =
(n+ 1)(n + 2)

2
=

=
(n+ 1)(n + 2)

2

√

2

π(n+ 1)(n + 2)
‖Pn‖A2(G) ≥

≥

√

(n+ 1)(n + 2)

2π
‖Pn‖A2(G) ≥

≥

√

1

2π
n ‖Pn‖A2(G) .
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