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On the Best Approximation of Certain Classes of Peri-
odic Functions by Trigonometric Polynomials
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Abstract. We obtain the estimates for the best approximation in the uniform metric of the
classes of 2m-periodic functions whose (v, 8)-derivatives have a given majorant w of the modulus
of continuity. It is shown that the estimates obtained here are asymptotically exact under some
natural conditions on the parameters v, w and S defining the classes.
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1. Introduction

Let L be the space of 2m-periodic functions summable over the period with the norm
£l = J7_|f(t)| dt and let C be the space of 2m-periodic continuous functions f with the
norm ||fllc = max |f(t)]. Suppose f € L and

Sifl= % —I-Z(ak cos kx + by sin k) (1)
k=1

is its Fourier series. Suppose also that (k) is an arbitrary numerical sequence and  is a
fixed real number (5 € R). If the series

,i ﬁk) (ak cos (ka: + %) + by sin (ka: + %))

is the Fourier series of a certain function ¢ € L, then ¢ is called (see, e.g., [10, 11]) the
(1, B)-derivative of the function f and is denoted by f;f . The set of continuous functions

f(x) having (¢, B)-derivatives such that fg} € H,,, where
Hy,={p € C: [o(t) — (") S w(|t' = t"]) vt',t" € R},
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and w(t) is a fixed modulus of continuity is usually denoted by CgHw.

For (k) = k=", r > 0, the classes C’g)Hw become the well-know Weyl-Nagy classes
WgH,, which, in turn, for § = r coincide with the Weyl classes W"H., (see, e.g., [11,
Chap. 3, Sec. 4, 6]). For natural numbers r and 8 = r we obtain the classes of periodic
functions whose r-th derivatives are in the class H,,.

Let 9t be the set of all continuous functions ¢(¢) convex downwards for ¢ > 1 and
satisfying the condition tlg& P(t) =

If ¢ € M, where

M =M (B) = {¢: ¢ € M when sin%r:Oor

1 € M and /m¢§)dt<oowhen sm—;éO}
1

then the classes C’g’Hw coincide with the classes of functions f(x), which are representable
by the convolutions

1 s
f(z) = % + ;/ oz +1)Ts(t)dt, pec H), x€R, (2)
(see, e.g., [10, p. 31]), where HO = {p € H,, f t)dt = 0}, and Wg(t) is a summable

function, whose Fourier series have the form E 1/)( )cos(k:t + pr/2).
k=
The set 91 is very inhomogeneous in the rate of convergence of functions v (t) to zero

as t — oo. This is why it was suggested in [10, pp. 115, 116] (see also [13, Subsec. 1.3])
to select subsets 9y and N from M as follows:

My={peM: 0<put) <K <oo, Vt=1},

i)ﬁcz{weim: 0< K; < (t)<K2<oo Vit > 1},

where p(t) = p(y;t) = n(t) = n(y;t) = v=1((t)/2), ¥»~1(-) is the inverse function
of ¥(-), and K, K, Ko are posmve constants (p0551bly dependent on 9 (-)). The function
w(1);t) is called the modulus of half-decay of the function ¢ (t). It is obvious that 9Mc C M.
Typical representatives of the set 9o are the functions t=", r > 0, representatives of the set
Mo \ M¢ are the functions In~*(t+1), o > 0. Let My = M’ NIN,. Natural representatives
of the set My, are the functions In"*(t 4+ 1), o > 1. It is easy to see that if 5 = 2I, 1 € Z,
the set M, coincide with My. Moreover, since for all 1) € M

/m@dtgfﬁp(n), n €N, (3)

(see [11, p. 204]) then M C MY,. Throughout the paper we denote the positive constants
that may be different in different relations by K, K;, i =1, 2.
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Let us denote the best approximation of the classes C}wa by trigonometric polyno-
mials t,,—1(-) of order not more than n — 1 by En(Cg)Hw), that is

Bu(CYH) = sup inf [I£() = taca()lc (4)
recym,

As is shown in [10, p. 330] if w(?) is an arbitrary modulus of continuity and ¢ € M,
B eRor e M, =0, then the following estimates hold for the quantity En(Cg’Hw) :

K19(n)w(1/n) < Ep(CHHL) < Kavp(n)w(1/n). (5)

When (k) = k=", r > 0, 5 € R, the orders of decrease of quantity (4) have been known
earlier [3] (see also [15, p. 508]).

It should be noted that unlike order estimates, exact values for the quantity En(Cg)Hw)

have been found for (k) = k=", r € N, f§ = r and for the convex upwards modulus of
continuity by Korneichuk [5] (see also [6, p. 319], [2, p. 344]). The similar problem on the
class of real-valued functions defined on the entire real axis and having the r-th continuous
derivatives f(") such that w(f");t) < w(t), t € [0,00), is solved in the paper of Ganzburg

[4].
The aim of the present work is to study the rate of decrease of quantity (4) when
1 € M and B € R.

2. Main Results

The following statements are true.

Theorem 1. Let ¢y € M, B € R and let w(t) be an arbitrary modulus of continuity.
Then, as n — oo,

On(w)

s

T, [ w
Eu(CYH,) = |sin%\/o ¢(%)¥dt+0(1)¢(n)w(1/n), (6)

where O, (w) € [2/3,1] and O(1) is a quantity uniformly bounded in n and B. If w(t) is a
convex upwards modulus of continuity, then 6, (w) = 1.
We give an example of functions ¢ and w for which (6) is an asymptotic formula.

Example 1. Let (t) =In"7(t+1),y>1, 8#2, 1l €Z and

w(t):{o, t=0,

In~(}+1), t>0, 0<a<l.

Then by virtue of (6) the following asymptotic formula holds as n — co:

En(CYH,) =~ 0T (n + 1)(

. pm
m!sm?!lnn—FO(l)),

where O(1) is a quantity uniformly bounded in n and (.
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Note that if .
)
n—oo Q/)(n)

_oW(d/n)
nh—>rgo w(l/n)n 0

=0, ¥'(n)=14¢'(nt), (7)
and
W'(1/n) =o' (1/n+), (8)

then equalities

. pnjwl/n) o WW)n o W(1/n)
nh—>120 Ol/nw(%)# dt _nh—{réo Qj)(n) +nh—>rgo w(l/n)n =0,

are valid.
Therefore from Theorem 1 we obtain

Corollary 1. Assume that ¢ € MG, B # 21, 1 € Z, w(t) is a convex upwards modulus of
continuity and conditions (7) and (8) are fulfilled. Then the following asymptotic formula
holds as n — oo :

1/n
En(CYH,,) = \sm \/ dt+0( Y (n)w(1/n),

where O(1) is a quantity uniformly bounded in n and (.

The functions ¥ and w from Example 1 can serve as an example of the functions which
satisfy conditions (7) and (8), respectively.
Relation (6) implies that if ¢ € 9 and

T [V w
|sin %\ /0 % dt = O(1w(1/n), BER, (9)
or ¢ € M (see (3)), then
En(CY H,) = O(1)(n)w(1/n).

Taking into account that function (t) is monotonically decreasing for ¢ > 1 and using
the estimate

En(CYH,) > K¢(n)w(l/n), Vi €N, (10)
(see [10, pp. 329, 330]), by virtue of relation (6) we arrive at the following statement:
Corollary 2. Let f € R and let w(t) be an arbitrary modulus of continuity. If 1 € Mc
or ¢ € M and w(t) satisfies condition (9), then
Kyp(n)w(1/n) < En(CHHy) < Kyt (n)w(1/n), (11)
where K1 and Ky are positive constants.

Thus, estimates (5) obtained by Stepanets [10, p. 330] (see also [11, Chap. 5, Sec. 22;
Chap. 7, Sec. 4]) for the arbitrary modulus of continuity w(¢) and for ¢» € M, € R or
for ¢ € MY, 5 =0, hold also in the case when ¢ € M, B # 0 and w(t) satisfies condition
(9). For example, the function w(t) =t*, 0 < a < 1, satisfies (9).
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3. Proof of Theorem 1

Suppose that all conditions of the theorem are satisfied. Let us carry out the proof in
two stages.
1. We shall find an upper estimate for En(CgHw).

We set
n—1 n k’2
Uw :30—1-2(1——k—>(akcosk‘$+bksinkm), neN, (12)
k=1

where a; and by are the Fourier coefficients of a function f € C’g’Hw. Show that for the
quantity
E(CEHL) = sup If() = Uy 1(fi)lle

feCy H,,
the inequality
E4(CYH..) |sm u / 9O 41 1+ 0wl /n), (13)
is true. Since
En(CYH,) < E.(CYH,), (14)

then the required upper estimate for En(Cg’Hw) follows from (13).

For further reasoning, we need the one statement, which follows from the results of book
[10, p. 65]. We will give a few notations before formulating it. Let f be a summable func-
tion, whose Fourier series have the form (1). Further, let A\, = {A;(u), Ao(w),..., Ap(u)}
be a collection of continuous functions on [0, 1] such that A(k/n) = )\,(Cn), k=0,n,né€N,
where )\,(Cn) are elements of the triangular matrix A = ||)\,(€n)||, k= 1,n, )\(()n) = 1, that
determine a polynomial of the form

Un(f;x;A) = % + Z )\,(Cn) (ag cos kx + b sinkx), n € N. (15)
k=1
The following statement is true:

Lemma A [10, p. 65]. Suppose that f € C;Z)Hw and 7, (u) is the continuous function
defined by relation

(1 = Ap(u)p(D)nu, 0<u<s,
To(u) = To(u; As ) = < (1 — N\ (u))(nu), % <u<l, (16)
1/}(77’“)7 uz>l1,

and such that its Fourier transform

Fa(t) = Tu(t; B) = ~ /Ooo Ta(w) cos (ut + %) du, BER,
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is summable on the whole real line, i.e. [~ [T,(t)|dt < oco. Then at any point z the
following equality holds:

e}
[APN
f@ - Un(fimt) = [ (o D)mldn, neN. (17)
oo n
Using Lemma A, let us show that
o0 t =R
f@-Uisn) = [ gf(e+T)R@dn VfeCHL neN (y)

where 7,,(t) is the Fourier transform of the function

2, 0<u<l1
() = mafus) = { P OSUST (19)
Y(nu), wu>=1.
Since polynomial (12) can be represented in the form
a n
wfl(f; x) = ?0 + Z MY (k/n)(ag cos kx + by, sin kx),
k=1
where \¥(k/n) are the values of continuous function

IO 0<u<i

Vi) = N\ () = P(1) n ST S
Awﬁmeﬁﬂﬁqu (20)

nu I n ~X ~ )

at the points u = k/n and

(1 =M (w)p(L)nu, 0<u <y,
Tn(u) = To(u;9) = ¢ (1= AV (w)v(nu), L <u<l,
Y (nu), u>1,

then it follows from Lemma A that for proving (18) it is sufficient to establish the inequality

/OO 70 (8)] dt < oo. (21)

—0o0

With this aim we put
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which yields
| aold <. (22)
t|>1

It is obvious that
[ anold < . (23)
t]<1

Taking (22), (23) together and using the estimates

o0
/ Du()|dt < 00 Vb € ),
—00
(see, e.g., [11, p. 174]) and

T (O] < |1 (8)] + [P (8)],
we obtain (21).

Furthermore, since the function 7,(u) satisfies all conditions of Lemma 3 from [14]
according to which

(e}
Tn(u) = / cos (ut + %)?n(t) dt, u >0,
—00

we have

o
~ 0
/ () dt = T"(ﬂl —0, B#2-1, leZ.

—o0 cos 5
If 5 =21 —1, 1 € Z, the equality ffooo Tn(t) dt = 0 is obvious, because 7,(t) is odd. Hence,
starting from (18) we can write

o0

ﬂw—wwmwzj

—0o0

(fg’ (33 + %) - fg’(x)>?n(t) dt VfeC§H, neN. (24)

Since fg € HY and, as it is not hard to see, for every ¢ € HY function ¢1(u) = p(u + h),
h € R, also belongs to HY, then using the notation

o(t, ) = ¢(t) = #(0),
it follows from (24) that

/OO QD(%) N 90(0)>?n(t) dt‘ = sup

En(CYH,) < sup
oo pEHY

pEHY

/OO 5(%,@@@) dt‘. (25)

—0o0

Now we shall simplify the integral in the right-hand side of (25) without loss of its principal
value. The following relations are true:

/OO 5(Lo¢)ult) e =

—00
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cos 5” [e'e] t [e'¢] 5_ [e'e]
= 2 / 5 -, cp) / Tn(u) cos ut du dt— 2 / / Tn(u) sinut du dt =
m SN L 0 0
cos 6; < st o0 sin &7 t
= 5 —, <p) Tn(u) cos ut du dt— —, <p) ) sin ut du dt
T —c0 n 0 n

1 t o0
+/ / smutdudt—i—/ 5(—,<p)/ Y(nu)sinutdudt |.  (26)
lt|<1 n’ 0 [t|l<1 T 1

Integrating by parts, taking into account the equality 7,(0) = 7,,(00) = 0 and assuming
that ¢’ (u) := ¢'(u+), we have

o 1 (e}
/ Tn(u) cosut du = 3 / 7, (u) sinut du =
0 0

2 1 e}
=— v(n) / wsinut du — 2 / Y (nu) sin ut du, (27)
t t )
and similarly
00 2 1 o)
/ Tn(u) sinut du = an) / ucos ut du + % / Y (nu) cos ut du. (28)
0 0 1

Combining (26)—(28), we obtain
o0
t ~
/005<E,<p)7'n(t) dt =

in BT
SlIl2

o
= — / 0 %,@) / Y(nu) sinut dudt + 7, (0, 0, 8), ¢ € HS, ne N,  (29)
<1 1

™

where

—0o0

— 5= )= ! inutdudt | —

n/_oo (n,gz))t/l ' (nu) sinut du )

i BT 1

sin - / t 1/

— 21(n ol —, )= u cos ut du dt+
T <1/}( ) |t\21 (n g&)t 0

t 1 [
+n ol —, —/ "(nw) cos ut du dt+
[ oGoe)g [ v

t 1 cos
—|—/ ol —,p / o (u) sinut du dt Jln

0. 8) = O ( 20w [~ 5(Le) [ usinut -

o B 5
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Let us show that
(¥, ¢, 8) = O(1)Y(n)w(1/n). (31)

Since for ¢ € [—1, 1] the quantity
1 M
- / u sin ut du,
t Jo

is bounded by a constant, then using the inequality [0(¢, )| < w(|t]), we get

t

Jin = —2¢(n) /|>1 (5(—, <p) % /01 usinut dudt + O(1)Y(n)w(1/n). (32)

It n
To estimate the integral in (32) we establish the following auxiliary statements.

Lemma 1. On every interval (a:,(f),x,(;j_l), a:,(;) =2k—-14+4d)7m/2a,i=0,1, ke N, a>0,

the function
<1 [, s
— usm(ut—l——)dudt, x>0, s=>1,
T t 0 2

has at least one zero.

Proof. We will give a proof of the lemma only for the case ¢ = 0, because the proof in
case ¢ = 1 is similar. On the basis of the estimate ‘ f;o L?t dt‘ < %, x >0 (see, e.g., [1, p.
5], [9, p. 343]) it is simple to see that the integral

o S o3 t [o o t
/ u’ sinu g — us/ sin dt.

converges uniformly with respect to u € [0,a], a > 0. Therefore, changing the order of
integration, we obtain

o0 1 a a o o3
S(x) ::/ —/ ussinutdudt:/ us/ sin ut dt du.
« tJo 0 T t

Making the change of variables and integrating by parts, we have

a o0 t 1 o0 L3 t a
S(m):/ us/ Slidtdu:— aSH/ Slidt—i-/ uw’sinux du | =
0 ux 3 s+1 ax t 0

1 sint cosar s [°
=—|at! / —dt—a° + — / weosuxdu |.
s+1 ax T T x Jo

Hence, taking into account the equation

*sint COoS ax ® cost
[ty ot
P azx ar T
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1 sp1 [ cost s @ o
S($):8+1<—a Lx t—Zdt—i_F\/o u COSUdU). (33)

On every interval (t;,tj11), t; = (2j+1)7/2, j = 0,1,..., the function [ ° <5 dt vanishes
with a change of sign at some point ;. Since

/ %dt:—/ R at <o,
r2 b r2 U

we get

then for any k € N

[e.e]
t
sign/ D dt = (—1)k. (34)
(2k—1)m/2 1t
Further, we have
(2k—1)7/2 k-1
/ usflcosudu:ao—i-Zaj,
0 =
where
/2 (2j+1)m/2
= / uw* ! cosu du, aj = / uw* ! cosu du.
0 (2j—1)m/2
If K =1, then
(2k—1)7/2
sign/ u' ! cosudu = signag = 1. (35)
0
Let k = 2,3,... Since the function u*~! does not decrease (s > 1) for u > 0, we can write
o] < Joy| < fajal, iz,

and respectively

(2k—1)7/2 (2k—1)m/2
sign/ u* ™ cosudu = sign/ wleosudu = (-1, k=23, .
0 (

2k—3)7/2
(36)
Taking account of (33)—(36), we have
2k —1
signS< 5 7r> = (-1 keN, a>0. (37)

The function S(x) is continuous for any = > 0. Therefore, it follows from (37) that on
every interval (xy,xg4+1), where xp = (2k — 1)7/2a, k € N, a > 0, the function S(z) has
the required zero. Lemma 1 is proved. <«

Lemma 2. Let p € H,, 1 <a<n, n€Nands>1. Then fori= 0,1, the following
estimate holds:

/|t>1 <%0(%) - 90(0)> % /Oa/n u® sin (ut + %) dudt = O(1)w(1/n), (38)

where O(1) is a quantity uniformly bounded in n, ¢, a and s.
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Proof. Making the change of variables, we get

/t|>1 <¢<%) - 90(0)> % /Oa/n u® sin (ut + 5 ) du dt —
1

= — _ _ S L1 . — 1
ot A}l/n(w(t) w(O))t/o u® sin (ut+ 2)dudt i=0, (39)

Let us denote by t,(;) the zero of function

o 1 a N
/ —/ ussin(ut—l—z—ﬂ)dudt, 1=0,1,
T t 0 2

on interval (a:l(c),xl(gl) :z:l(j) = 2k ZE_ltiz which exists according to Lemma 1. Using the

notation 6(t) = ¢(t) — ¢(0), we have

o0 1 a s .
‘/1/71(5(15);/0 u® sin (ut—i— )dudt‘
@

Z/Hl ,(f)))%/oaussin (ut+ 2>dudt‘

tgi) 1 a
o(t)- % i t du dt
n (t) /Ousm(u—l—2) u dt+

(2) ) 1 “ . s
< w(ty )/ —/ u5s1n(ut+—>du dt + w(4,) / us1n(ut+ )du dt,
1/n t 0 2 (Z) t
(40)
where A; = sup (t,(;j_l - t,(;)). Since tgz) < 2 and A; < 2, it follows from (40) that
k
o0 1 a 2 o) 1 a .
‘/ (5(15)—/ u’ sin (ut—i— )dudt' ( ﬂ)/ —‘/ u® sin (ut—l—z—ﬂ) du|dt. (41)
1/n tJo a 1/n t|.Jo 2
After integrating by parts it is easy to see, that
a ; 2 S
‘/ussin(ut—l—z—w)dug C ts0, i=0,1. (42)
0 2 t
From (41) and (42) follows the inequality
& 1 [ ) 2 dt 2
(5(15)—/ u’® sin (ut—l—z—ﬂ) dudt‘ < 2a° w( W)/ 5 —2asw<—7r)n<
1/n t Jo 2 1/n t a
2 1 1 1
< 2as<ﬂ + 1>w<—)n < 8a3_17m2w(—) < 87m5+1w(—), 1=0,1. (43)
a n n n

The estimate

/1/n5(t)%/aussin (ut+ ) dwde = 01 /m), i=01, ()
- 0

o0
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is similarly proved. Comparing relations (43), (44) and (39), we obtain (38). Lemma 2 is
proved. «

Applying Lemma 2 to the integral in (32) and, at the same time, to J3,, we have
Jin =0 Y(n)w(l/n), (45)

J3n = O(1)p(n)w(1/n). (46)

In the monograph [11, pp. 212, 216, see relations (4.26") and (4.42), (4.45), (4.46)] it is
shown, that

Jon = O)(n)w(l/n), Vi € My, (47)
and
Jan =0)(n)w(l/n) Y e My, B#2, l€Z. (48)
Since |1, (u)| < ¥(n), u € [0,1], it is clear that
Jsn = O(1)¢p(n)w(1/n). (49)

Comparing (30), (45)-(49), we arrive at (31). Then from (29) for any function ¢ € H?
and n € N, we obtain

/ md(%,w)?n(t) dt = -2 /| gla(%,w) / (nu) sin ut dudt + O(1)(n)w(1/n) =
: & 1 [e'e)
= _sm7T2 /0 <(5(%,gp> —(5(— %,4,0)) /1 W (nu) sin ut du dt+
+O()Y(n)w(l/n), ¢ €My, BER. (50)
Since ~
/ Y(nu)sinutdu >0, te (0,1, YeM, B#2, l€Z, (51)
1

(see, e.g., [12, p. 143]) and

/lw(%) /00 Y(nu) sin ut du dt =
0 1

- (O s o, vemy, g4 ez ()
0 t/ 1

(see [8, p. 528]), from (25) and (50) we obtain (13). Putting together inequalities (13)
and (14) we find a required estimate for quantity (4):

l/n
EW(CYH,) _\sm |/ “) 4+ 0 yp(mw(1/n), weM, BER. (53)

2. Let us find a lower bound for En(CgHw).
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Let ¢n,(t) be an odd 27 /n-periodic function defined on [0, 7/n] by the equalities
%%J(Qt) t € [0,7/2n],
en(t) = 2
Sw(r—2t), te[r/2n,7/n]

where ¢, = 1 if w(t) is a convex upwards modulus of continuity and ¢, = 2/3 otherwise.
As shown in [10, pp. 83-85] if w(t) is an arbitrary modulus of continuity, then

lon(t) — ()] <w(t' —t")), t,t" € [-m/2n,7/2n].
This implies that
lon(t) — en(t")] <w(t' —t7]), 1" R,
and, hence, ¢, € H,,. We denote by f*(-) the function from the set C’}wa, P € M, whose

(1, B)-derivative f*g}(t) coincides with the function ¢, (t) on a period. By relations (2),
such a function f*() exists.
In virtue of formula (3.4) from the book [10, Chap. 2, Subsec. 3.1] the following

equality holds for any f € C’g’Hw, e M:
B
flx) = Up-1(f;2;A) = fﬁ (x+1t) Zl/} cos(kt—i——)—

n—1
—zp$wwn%0¢+@3)ﬁ,xeR,neN (54)

where U,_1(f;x;A) is a trigonometric polynomial of the form (15), such that /\SZ”) =0.
Since function ¢, (t) is odd 27 /n-periodic, the equalities

/gon(t)sinktdtzo, k=1,2,...,n—1, n>2, (55)

(see, e.g., [6, p. 159]) and
ea(Z+t) = (~Digalt), i€l

hold. Then, using relation (54) for f*(-), we obtain

) = Una (775 550) =
= (_Wl)l /_7; gon(t)<§1/1(k:) cos (kzt + %T) - :z;:i )\,(gn)w(k:) Cos (k:t + %)) dt =

wmm4m+%§ﬁ:

Il
S0
—_
—
©
3
=
[]e
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(-1 .
= — ktdt, i€Z, =2,3,-. 56
- sm » g (k) sin i n (56)
It is obvious from this that there exist 2n points t; = %T, i1=20,1,...,2n — 1, on the

period [0, 27) at which the difference
fH (@) = Una (5525 0),

takes values with alternating signs. Then by the de la Vallée Poussin theorem [7] (see also
[10, p. 312], [11, p. 491]), we find

B 2 2|5 [T > vimysinkear], v e o, (57)

k=n

where

En(f*) = if [If*() = ta-1()llc, neN.
From (56) and (57) it follows, in particular, that
En(f*) 2 [f7(0) = Una(f50:A)], n=2,3,---. (58)

Inequality (58) is satisfied for triangular matrix A = ||)\(n |l, K =1, n, such that A =
Let’s define its remaining elements in the following way:

A = Xe(k/n), k=T,n—1, neN,
where \¥(-) is defined by (20). Since in this case
Un1(£70:A) = Uy (£730),
then from (58) we obtain, taking the inequality En(Cg)Hw) > E,(f*) into account,
En(CYH,) > [£(0) = UY {(£50)], n=2,3,..., ¢ € M. (59)
By virtue of (24) and (50)

O -v 0 = [ (r3(E) - 13-

oo n
in 28 1 t t >
= _s1n7T2 /0 <gpn<ﬁ) —<Pn<— E))/l Y(nu)sinut dudt + O(1)Y(n)w(l/n) =
B el 0
- e / w % / (nu) sinut du dt + O()p(n)w(1/n), €My, (60)
0
Combining (51), (52), (59 ) and (60), we arrive at the desired estimate
l/n

E,(CY H.) C“|sm |/ dt—i—O( Y(n)w(l/n), ¥ e My, B2, |
(61)

From (53) and (61) we obtain formula (6). Theorem 1 is proved.
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